A Centralized Local Algorithm for the Sparse Spanning Graph Problem

Christoph Lenzen, Reut Levi

A Sublinear Tester for Outerplanarity (and Other Forbidden Minors) With One-Sided Error

Hendrik Fichtenberger, Reut Levi,

Yadu Vasudev, Maximilian Wötzel

A Centralized Local Algorithm for

Christoph Lenzen, Reut Levi

the Sparse Spanning Graph Problem

Local Graph Algorithms

classic / global algorithm see whole input, $\Omega(n)$ time output solution

local algorithm

see only small parts, o(n) time provide query access to solution

ı

- bounded degree graph G = (V, E) given, V = [n]
- LSSG algorithm provides query access to a spanning graph G' = (V, E'): "is $(7, 18) \in E'$?"

- bounded degree graph G = (V, E) given, V = [n]
- LSSG algorithm provides query access to a spanning graph G' = (V, E'): "is (7, 18) ∈ E'?"
- answer is computed on demand, no preprocessing, all answers consistent with one G'

- bounded degree graph G = (V, E) given, V = [n]
- LSSG algorithm provides query access to a spanning graph G' = (V, E'): "is (7, 18) ∈ E'?"
- answer is computed on demand, no preprocessing, all answers consistent with one G'
- local algorithm queries adjacency lists of input
 e. g., "what is the 2nd neighbor of vertex 14?"

- bounded degree graph G = (V, E) given, V = [n]
- LSSG algorithm provides query access to a spanning graph G' = (V, E'): "is (7, 18) ∈ E'?"
- answer is computed on demand, no preprocessing, all answers consistent with one G'
- local algorithm queries adjacency lists of input
 e. g., "what is the 2nd neighbor of vertex 14?"

Main Result

An LSSG algorithm with query and time complexity $\tilde{O}(n^{2/3}) \cdot \operatorname{poly}(1/\epsilon)$ per query. It guarantees $|E'| \leq (1+\epsilon)n$ w.h.p.

Given a graph G,

- 1. partition G into small parts
- 2 compute spanning tree inside of the parts

Given a graph G,

- 1. partition G into small parts
 - 2. compute spanning tree inside of the parts
 - 3. add en edges between parts to make graph connected

summary: each core cluster has

- a BFS spanning tree ✓
- diameter O(log n)
- size O(n^{1/3}) √

Not in This Talk

- Partitioning of remote vertices into remote clusters
- Joining core clusters to reduce number of cluster pairs
 (≈ number of edges needed to connect clusters) to εn

A Sublinear Tester for **Outerplanarity (& Other Forbidden**

Minors) With One-Sided Error

Hendrik Fichtenberger, Reut Levi,

Yadu Vasudev, Maximilian Wötzel

Sublinear Graph Algorithms

classic / global algorithm see everything, $\Omega(n)$ time output solution

sublinear algorithm see only small parts, o(n) time estimate solution's value

Testing Outerplanarity With One-Sided Error

Testing Outerplanarity With One-Sided Error

Testing Outerplanarity With One-Sided Error

Main Result

An \mathscr{F} -minor freeness tester for every family \mathscr{F} of forbidden minors that contains either the $K_{2,k}, (k \times 2)$ -grid or k-circus graph with query complexity / running time $\tilde{O}(n^{2/3}/\epsilon^5)$

Partitioning Revisited

How about the cut in Voronoi partitions?

- number of cut edges involving a remote cluster is $\leq \epsilon dn/4$
- number of cut edges between core clusters might be > $\epsilon dn/4$

Theorem: cuts of size > f between clusters imply $K_{2,k}$ -minors

Theorem: cuts of size > f between clusters imply $K_{2,k}$ -minors

idea: always have BFS tree, enforce more structure by large cut size

 $f \approx \Theta(d \ k \ log(n))$

Theorem: cuts of size > f between clusters imply $K_{2,k}$ -minors

idea: always have BFS tree, enforce more structure by large cut size

 $f \approx \Theta(d \ k \ log(n))$

Theorem: cuts of size > f between clusters imply $K_{2,k}$ -minors

idea:

always have BFS tree, enforce more structure by large cut size

 $f \approx \Theta(d \ k \ log(n))$

at most *d* incident edges per vertex

Theorem: cuts of size > f between clusters imply $K_{2,k}$ -minors

 $(k+1) \cdot log(n)$ cut vertices on left side

idea:

always have BFS tree, enforce more structure by large cut size

 $f \approx \Theta(d \ k \ log(n))$

at most d incident edges per vertex

Construction of $K_{2,k}$

Theorem: cuts of size > f between clusters imply $K_{2,k}$ -minors

Construction of $K_{2,k}$

Theorem: cuts of size > f between clusters imply $K_{2,k}$ -minors

Summary

Result: Local Spanning Graphs

An LSSG algorithm with query and time complexity $\tilde{O}(n^{2/3}) \cdot \operatorname{poly}(1/\epsilon)$ per query. It guarantees $|E'| \leq (1+\epsilon)n$ w.h.p.

Result: Minor-Freeness Testing

An \mathscr{F} -minor freeness tester for every family \mathscr{F} of forbidden minors that contains either the $K_{2,k}$, $(k \times 2)$ -grid or k-circus graph with query complexity / running time $\tilde{O}(n^{2/3}/\epsilon^5)$

recent progress by Kumar et al. (2018) for arbitrary \mathcal{F} : $O(n^{1/2+o(1)})$

Additional Slides

Algorithm

- 1. sample $O(f / \varepsilon)$ edges
- 2. for every sampled edge((u,v);
 - i) explore cluster(s) of u,v
 - ii) compute cut sizes between core cluster and remaining Voronoi cell of u,v
 - iii) compute cut sizes between core / core cluster of u / v
- 3. reject iff minor found or some cut > f

Problem: $f \cdot \#(\text{core clusters})^2 \notin O(\epsilon dn)$

Problem: $f \cdot \#(\text{core clusters})^2 \notin O(\epsilon dn)$

1. mark each Voronoi cell w.p. 1/n^{1/3}

Problem: $f \cdot \#(\text{core clusters})^2 \notin O(\epsilon dn)$

1. mark each Voronoi cell w.p. 1/n^{1/3}
2. mark each core cluster of marked cells

Problem: $f \cdot \#(\text{core clusters})^2 \notin O(εdn)$

1. mark each Voronoi cell w.p. 1/n1/3

2. mark each core cluster of marked cells

3. join unmarked core clusters with marked neighboring core clusters

Problem:
$$f \cdot \#(\text{core clusters})^2 \notin O(\varepsilon dn)$$

- 1. mark each Voronoi cell w.p. 1/n1/3
- 2 mark each core cluster of marked cells
- 3. join unmarked core clusters with marked neighboring core clusters

- □ locally reconstructable
- ☑ local membership queries
- $\square f \cdot \#(\text{core clusters}) \cdot \#(\text{super clusters}) \in O(\epsilon dn)$

Tester With Super Clusters

- 1. sample $O(f / \varepsilon)$ edges
- 2. for every sampled edge(u,v):
 - i) explore cluster(s) of u,v

- iii) compute cut sizes between core / core and core / super cluster of u / v
- 3. reject iff minor found or some cut > f

Remote Clusters [Elkin, Neiman, 2017]

- 1. each remote vertex picks random delay
- 2. after delay, start BFS: one level per time
- 3. construct remote clusters from BFS