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Local Graph Algorithms
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classic / global algorithm
see whole input, Q(n) time

output solution

© BrokenSphere / Wikimedia Comimons

local algorithm

see only small parts, o(n) time
provide query access to solution
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The Local Sparse Spanning Graph Problem (LSSG)

« bounded degree graph G = (V,E) given, V = [n]
+ LSSG algorithm provides query access to a
ﬁ; E % spanning graph G’ = (V,E’): “is (7,18) € E’?”
« answer is computed on demand, no
preprocessing, all answers consistent with one G’

« local algorithm queries adjacency lists of input

e. g., “what is the 2nd neighbor of vertex 14?”

Main Result
An LSSG algorithm with query and time complexity
O(n?3) - poly(1/€) per query. It guarantees |E’| < (1 + €)n w.h.p.
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Graph Partitions

Given a graph G,
1. partition G into small parts
2. compute spanning tree inside
of the parts

3.add en between parts

to make graph connected
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Voronoi Partitions

1. select ©(n?*?) random

2. construct Voronoi cells
according to path distance

3. sort outvertices:

distance to center Q(log n)
4. shatter Voronoi cells into
O(n??) core clusters of size O(n'?)

summary: each core cluster has
« a BFS spanning tree
« diameter O(log n)v/’
. size O(nm)\/
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Local Construction of Core Clusters

o>
ot [ ]
1. each vertex flips a coin
2. BFS exploration
3. cut/heavy children

complexity: O(n'?)

Not in This Talk
« Partitioning of remote vertices into remote clusters

« Joining core clusters to reduce number of cluster pairs

(» number of edges needed to connect clusters) to en
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Sublinear Graph Algorithms
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classic / global algorithm

see everything, Q(n) time
output solution

sublinear algorithm
see only small parts, o(n) time
estimate solution’s value



Testing Outerplanarity With One-Sided Error
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Testing Outerplanarity With One-Sided Error

;6la

X = : accept always
0<xsedn. don't care
% edn < x : reject w.p. 2/3
a ]
to<d { e-close
e-far
Main Result

An & -minor freeness tester for every family & of forbidden
minors that contains either the K i, (k x 2)-grid or k-circus graph
with query complexity / running time O(n%3/¢°)



Partitioning Revisited
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How about the cut in Voronoi partitions?
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X

« number of cut edges involving a remote cluster is < edn/4

« number of cut edges between core clusters might be > edn/4
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Construction of K, ;

Theorem: cuhs of size > f between clusters imply K, ,-minors

—log(n) forces branching

O(log n) idea:
always have BFS tree,
enforce more structure

by large cut size

!
(k+1) - log(n) cut vertices on left side f ~ ©(d k log(n))

at most d incident
edges per vertex



Result: Local Spanning Graphs
An LSSG algorithm with query and time complexity
O(n??3) - poly(1/€) per query. It guarantees |E’| < (1 + €)n w.h.p.

Result: Minor-Freeness Testing

An & -minor freeness tester for every family & of forbidden
minors that contains either the K i, (k x 2)-grid or k-circus graph
with query complexity / running time O(n%3/¢°)

recent progress by Kumar et al. (2018) for arbitrary %: O(n!/2+°())
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Algorithm

1. sample O(f / €) edges m
2. for every samiled edge

i) explore of u,v

ii) compute cut sizes between core cluster
and remaining Voronoi cell of u,v

iii) compute cut sizes between core / core
cluster ofu/v

3. reject iff minor found or some cut > f
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Super Clusters

Problem: f - #(core clusters)” & O(edn)

1. m4%k each Voronoi cell w.p. 1/n'?

2. mrk eachof marked cells

3. join unmarked core clusters with
marked neighboring core clusters

Mocally-reeonstructable-

i local membership queries
ﬂf - #(core clusters) - #(super clusters) € O(edn)



Tester With Super Clusters

1. sample O(f / €) edges M
2. for every sampled edge
i) exploreof u,v
ii) compute cut sizes between core cluster
and remaining Voronoi cell of u,v
iii) compute cut sizes between core / core

and core / super cluster of u /v
3. reject iff minor found or some cut > f




Remote Clusters [Elkin, Neiman, 2017]

1. eachvertex picks random delay
2. after delay, start BFS: one level per time
3. construct remote clusters from BFS
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