A Centralized Local Algorithm
for the Sparse Spanning Graph Problem
Christoph Lenzen, Reut Levi

A Sublinear Tester for Outerplanarity
(and Other Forbidden Minors) With One-Sided Error
Hendrik Fichtenberger, Reut Levi,
Yadu Vasudev, Maximilian Wotzel

A Centralized Local Algorithm for
the Sparse Spanning Graph Problem
Christoph Lenzen, Reut Levi

Local Graph Algorithms

B“wva%‘
z
5 osedin
osefov:
é’" k] a N o\°\wa
Z S % o o
< Sin Ca % *v\,Masné W
~ Slogg = 7S g_
% DN R
Kok % by S
G % &
3 S o
S pames® Praha cel
&
x A
&
% &
',
Karlova®y »
=4 ® 7
st ? %
) 3 r}b %
. E S5 Q-§ %%
Prsthova: 5yaré Misto

petemst

Map data © OpenStreetMap contributor;;

classic / global algorithm
see whole input, Q(n) time

output solution

© BrokenSphere / Wikimedia Comimons

local algorithm

see only small parts, o(n) time
provide query access to solution

The Local Sparse Spanning Graph Problem (LSSG)

« bounded degree graph G = (V,E) given, V = [n]

« LSSG algorithm provides query access to a
E % spanning graph G’ = (V,E’): “is (7,18) € E’?”

The Local Sparse Spanning Graph Problem (LSSG)

« bounded degree graph G = (V,E) given, V = [n]

« LSSG algorithm provides query access to a
E % spanning graph G’ = (V,E’): “is (7,18) € E’?”
« answer is computed on demand, no

preprocessing, all answers consistent with one G’

The Local Sparse Spanning Graph Problem (LSSG)

« bounded degree graph G = (V,E) given, V = [n]
« LSSG algorithm provides query access to a
E & spanning graph G’ = (V,E’): “is (7,18) € E’?”
« answer is computed on demand, no
preprocessing, all answers consistent with one G’

+ local algorithm queries adjacency lists of input

e. g., “what is the 2nd neighbor of vertex 14?”

The Local Sparse Spanning Graph Problem (LSSG)

« bounded degree graph G = (V,E) given, V = [n]
+ LSSG algorithm provides query access to a
ﬁ; E % spanning graph G’ = (V,E’): “is (7,18) € E’?”
« answer is computed on demand, no
preprocessing, all answers consistent with one G’

« local algorithm queries adjacency lists of input

e. g., “what is the 2nd neighbor of vertex 14?”

Main Result
An LSSG algorithm with query and time complexity
O(n?3) - poly(1/€) per query. It guarantees |E’| < (1 + €)n w.h.p.

Graph Partitions

Given a graph G,

Graph Partitions

Given a graph G,
1. partition G into small parts

Graph Partitions

Given a graph G,
1. partition G into small parts
2. compute spanning tree inside
of the parts

Graph Partitions

Given a graph G,
1. partition G into small parts
2. compute spanning tree inside
of the parts

3.add en between parts

to make graph connected

Voronoi Partitions

Voronoi Partitions

1. select ©(n?*?) random

Voronoi Partitions

1. select ©(n?*?) random

2. construct Voronoi cells
according to path distance

Voronoi Partitions

1. select ©(n?*?) random

2. construct Voronoi cells
according to path distance

3. sort outvertices:

distance to center Q(log n)

Voronoi Partitions

1. select ©(n?*?) random

2. construct Voronoi cells
according to path distance
3. sort out(emote vertices:
distance to center Q(log n)
4. shatter Voronoi cells into
O(n??) core clusters of size O(n'?)

Voronoi Partitions

1. select ©(n?*?) random

2. construct Voronoi cells
according to path distance

3. sort outvertices:

distance to center Q(log n)
4. shatter Voronoi cells into
O(n??) core clusters of size O(n'?)

summary: each core cluster has
« a BFS spanning tree
« diameter O(log n)v/’
. size O(nm)\/

Local Construction of Core Clusters

Local Construction of Core Clusters

1. each vertex flips a coin

Local Construction of Core Clusters

1. each vertex flips a coin
2. BFS exploration

Local Construction of Core Clusters

1. each vertex flips a coin
2. BFS exploration
3. cut/heavy children

complexity: O(n'?)

Local Construction of Core Clusters

1. each vertex flips a coin
2. BFS exploration
3. cut/heavy children

complexity: O(n'?)

Local Construction of Core Clusters

1. each vertex flips a coin
2. BFS exploration
3. cut/heavy children

complexity: O(n'?)

Local Construction of Core Clusters

1. each vertex flips a coin
2. BFS exploration
3. cut/heavy children

complexity: O(n'?)

Local Construction of Core Clusters

o>
ot []
1. each vertex flips a coin
2. BFS exploration
3. cut/heavy children

complexity: O(n'?)

Not in This Talk
« Partitioning of remote vertices into remote clusters

« Joining core clusters to reduce number of cluster pairs

(» number of edges needed to connect clusters) to en

A Sublinear Tester for
Outerplanarity (& Other Forbidden

Minors) With One-Sided Error
Hendrik Fichtenberger, Reut Levi,

Yadu Vasudev, Maximilian Wotzel

Sublinear Graph Algorithms

<
X
8 o
2 = 9 o
S& % TR
~ g,,%i L %, §Nhsn W ‘<:
ER S 3 S
% INEN LB
@r;si 0,& °§
3 S K
§
S pames® Praha cel
& /
&
% &
Karlova®y S
=4 ® 7
N\wﬁ;% ® %
2 & 2
. z5 & %,
Prsthova: 5yaré Misto
ae“"«“‘sw Al ﬂ

Map data © OpenStreetMap contributors
classic / global algorithm

see everything, Q(n) time
output solution

sublinear algorithm
see only small parts, o(n) time
estimate solution’s value

Testing Outerplanarity With One-Sided Error

X = : accept always

0<xsedn. don't care
% edn < x : reject w.p. 2/3

#e<d

Testing Outerplanarity With One-Sided Error

;6la

X = : accept always
0<xsedn. don't care
% edn < x : reject w.p. 2/3
a]
to<d { e-close

e-far

Testing Outerplanarity With One-Sided Error

;6la

X = : accept always
0<xsedn. don't care
% edn < x : reject w.p. 2/3
a]
to<d { e-close
e-far
Main Result

An & -minor freeness tester for every family & of forbidden
minors that contains either the K i, (k x 2)-grid or k-circus graph
with query complexity / running time O(n%3/¢°)

Partitioning Revisited

—
posS
~

I

How about the cut in Voronoi partitions?

B A0
X

« number of cut edges involving a remote cluster is < edn/4

« number of cut edges between core clusters might be > edn/4

Construction of K, ;

Theorem: cuhs of size > f between clusters imply K, ,-minors

Construction of K, ;

Theorem: cuhs of size > f between clusters imply K, ,-minors

idea:
always have BFS tree,
enforce more structure
by large cut size

f = ©(d k log(n)

Construction of K,

Theorem: cuhs of size > f between clusters imply K, ,-minors

—

idea:
always have BFS tree,
enforce more structure
by large cut size

f = ©(d k log(n)

Construction of K, ;

Theorem: cuhs of size > f between clusters imply K, ,-minors

idea:
always have BFS tree,
enforce more structure
by large cut size

f = ©(d k log(n)

at most d incident
edges per vertex

Construction of K, ;

Theorem: cuhs of size > f between clusters imply K, ,-minors

idea:
always have BFS tree,
enforce more structure
/I\ by large cut size
(k+1) - log(n) cut vertices on left side f ~ ©(d k log(n))

at most d incident
edges per vertex

Construction of K, ;

Theorem: cuhs of size > f between clusters imply K, ,-minors

(—log(n) forces branching

O(log n) idea:
always have BFS tree,
enforce more structure
/I\ by large cut size
(k+1) - log(n) cut vertices on left side f ~ ©(d k log(n))

at most d incident
edges per vertex

Construction of K, ;

Theorem: cuhs of size > f between clusters imply K, ,-minors

—log(n) forces branching

O(log n) idea:
always have BFS tree,
enforce more structure

by large cut size

!
(k+1) - log(n) cut vertices on left side f ~ ©(d k log(n))

at most d incident
edges per vertex

Result: Local Spanning Graphs
An LSSG algorithm with query and time complexity
O(n??3) - poly(1/€) per query. It guarantees |E’| < (1 + €)n w.h.p.

Result: Minor-Freeness Testing

An & -minor freeness tester for every family & of forbidden
minors that contains either the K i, (k x 2)-grid or k-circus graph
with query complexity / running time O(n%3/¢°)

recent progress by Kumar et al. (2018) for arbitrary %: O(n!/2+°())

Additional Slides

Algorithm

1. sample O(f / €) edges m
2. for every samiled edge

i) explore of u,v

ii) compute cut sizes between core cluster
and remaining Voronoi cell of u,v

iii) compute cut sizes between core / core
cluster ofu/v

3. reject iff minor found or some cut > f

Super Clusters

Problem: f - #(core clusters)” & O(edn)

Super Clusters

Problem: f - #(core clusters)” & O(edn)

1. m4%k each Voronoi cell w.p. 1/n'?

Super Clusters

Problem: f - #(core clusters)” & O(edn)

1. m4%k each Voronoi cell w.p. 1/n'?

2. mrk eachof marked cells

Super Clusters

Problem: f - #(core clusters)” & O(edn)

1. m4%k each Voronoi cell w.p. 1/n'?

2. mrk eachof marked cells

3. join unmarked core clusters with
marked neighboring core clusters

Super Clusters

Problem: f - #(core clusters)” & O(edn)

1. m4%k each Voronoi cell w.p. 1/n'?

2. mrk eachof marked cells

3. join unmarked core clusters with
marked neighboring core clusters

Mocally-reeonstructable-

i local membership queries
ﬂf - #(core clusters) - #(super clusters) € O(edn)

Tester With Super Clusters

1. sample O(f / €) edges M
2. for every sampled edge
i) exploreof u,v
ii) compute cut sizes between core cluster
and remaining Voronoi cell of u,v
iii) compute cut sizes between core / core

and core / super cluster of u /v
3. reject iff minor found or some cut > f

Remote Clusters [Elkin, Neiman, 2017]

1. eachvertex picks random delay
2. after delay, start BFS: one level per time
3. construct remote clusters from BFS

	A Centralized Local Algorithm for the Sparse Spanning Graph Problem Christoph Lenzen, Reut Levi
	A Sublinear Tester for Outerplanarity (& Other Forbidden Minors) With One-Sided Error Hendrik Fichtenberger, Reut Levi, Yadu Vasudev, Maximilian Wötzel
	Appendix
	Additional Slides

