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Simple Algorithm for the Augmented General Model

𝐻

𝐺

repeat until success:

1. sample |𝐸(𝐻)| edges uniformly at random

2. check wether they form a copy of 𝐻
complexity:

• probability to sample a fixed copy of 𝐻 : Θ( 1
𝑚|𝐸(𝐻)| )

• expected running time: Θ(𝑚|𝐸(𝐻)|
#𝐻 )

can we do better?
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Our Results

Main Theorem
For any subgraph 𝐻 , sampling exactly uniformly from all copies of 𝐻
in an input graph 𝐺 has expected query and time complexity

𝒪(𝑚𝜌(𝐻)
#𝐻 ) in the augmented general model.

This is essentially tight for cliques, even when we require only almost
uniform sampling.
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Fractional Edge Covers

Theorem [AKK18]2

For every graph 𝐻 , there is a minimum fractional edge
cover by vertex-disjoint odd cycles and stars .

The value 𝜓𝐻 (𝐶) of a cover 𝐶 is

𝜓𝐻 (𝐶) = ∑
𝑘∈{3,5,…}
𝐶𝑘∈𝐶

𝑘
2 + ∑

𝑘∈ℕ𝑆𝑘∈𝐶

𝑘.

We define 𝜌(𝐻) = min𝐶 𝜓𝐻 (𝐶).

2Assadi, Kapralov, Khann, ITCS’18
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Rejection Sampling

𝑝 𝑞

Problem

Given samples from distribution 𝑝
on [𝑛], simulate sampling from 𝑞.

1. scale 𝑝 linearly by factor
𝑠 = max𝑖 𝑞(𝑖)/𝑝(𝑖)

2. sample 𝑜 from 𝑝
3. sample 𝑥 uniformly from [0, 1]
4. accept 𝑜 if 𝑥 ≤ 𝑞(𝑜)/(𝑠𝑝(𝑜)),

reject and repeat otherwise
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Algorithm

2. repeat until success:
a. sample edges from 𝐺 as described
b. check whether they form a copy of 𝐻 using

pair queries

1. decompose 𝐻 into odd cycles 𝐶 and stars 𝑆

𝐻

𝐺
sample 𝐻 exactly uniformly in 𝒪(𝑚𝜌(𝐻)

#𝐻 ) expected time
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