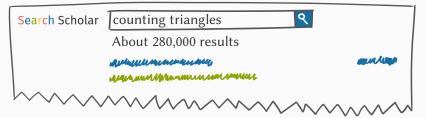
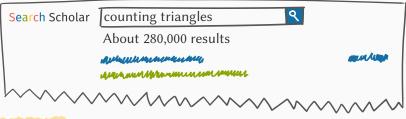
Sampling Arbitrary Subgraphs Exactly Uniformly in Sublinear Time

Hendrik Fichtenberger, Mingze Gao and Pan Peng ICALP 2020

subgraph problems are basic but popular:

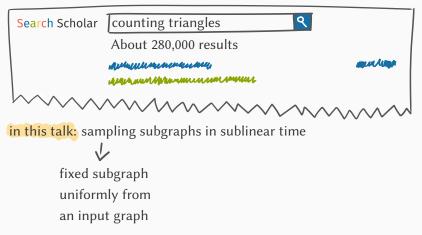


subgraph problems are basic but popular:



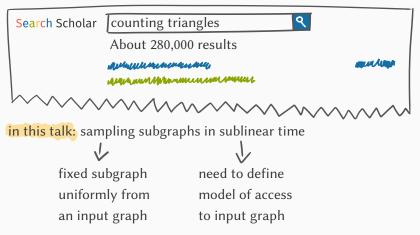
in this talk: sampling subgraphs in sublinear time

subgraph problems are basic but popular:



1

subgraph problems are basic but popular:



1

query for uniformly random vertex

query for uniformly random vertex

given a vertex, query for its *i*-th neighbor

query for uniformly random vertex

given a vertex, query for its *i*-th neighbor

given two vertices, query if they are adjacent

query for uniformly random vertex

given a vertex, query for its *i*-th neighbor

given two vertices, query if they are adjacent

general model

query for uniformly random vertex

given a vertex, query for its *i*-th neighbor

given two vertices, query if they are adjacent

general model

query for uniformly random edge

query for uniformly random vertex

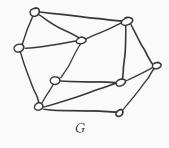
given a vertex, query for its *i*-th neighbor

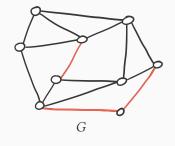
given two vertices, query if they are adjacent

general model

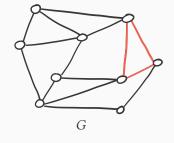
query for uniformly random edge

augmented general model

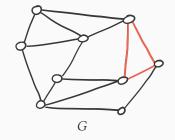




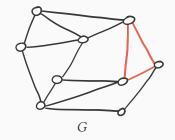
- 1. sample |E(H)| edges uniformly at random
- 2. check we ther they form a copy of ${\cal H}$



- 1. sample |E(H)| edges uniformly at random
- 2. check wether they form a copy of H



- 1. sample |E(H)| edges uniformly at random
- 2. check wether they form a copy of *H* complexity:
 - probability to sample a fixed copy of $H: \Theta\left(\frac{1}{m^{|E(H)|}}\right)$
 - expected running time: $\Theta\left(\frac{m^{|E(H)|}}{^{\#}H}\right)$



- 1. sample |E(H)| edges uniformly at random
- 2. check wether they form a copy of Hcomplexity:
 - probability to sample a fixed copy of $H: \Theta\left(\frac{1}{m^{|E(H)|}}\right)$
- expected running time: $\Theta\Big(\frac{m^{|E(H)|}}{^{\#H}}\Big)$ can we do better?

improvements over linear query bounds in $\tilde{O}(...)$, all essentially tight for cliques

 $\begin{array}{ll} \text{subgraph } H & \text{approximate} \\ & \text{counting} \end{array}$

sampling *approx*. uniformly

sampling *exactly* uniformly

¹Goldreich, Ron, RS&A'08; Eden, Rosenbaum, SOSA'18; Eden, Ron, Seshadhri, STOC'18; Assadi, Kapralov, Khanna, ITCS'18

improvements over linear query bounds in $\tilde{O}(...)$, all essentially tight for cliques subgraph H approximate sampling approx. sampling exactly uniformly uniformly $\frac{n}{\sqrt{m}}$ [GR08] $\frac{n}{\sqrt{m}}$ [ER18]

general model

 $\rho(H)$ is the frac. edge cover size of $H, |H|/2 \le \rho(H) \le |H|$

¹Goldreich, Ron, RS&A'08; Eden, Rosenbaum, SOSA'18; Eden, Ron, Seshadhri, STOC'18; Assadi, Kapralov, Khanna, ITCS'18

improvements over linear query bounds in $\tilde{O}(...)$, all essentially tight for cliques sampling approx. sampling exactly subgraph H approximate uniformly uniformly counting [GR08] $\frac{n}{\sqrt{m}}$ [ER18] general model $\rho(H)$ is the frac. edge cover size of H, $|H|/2 \le \rho(H) \le |H|$

¹Goldreich, Ron, RS&A'08; Eden, Rosenbaum, SOSA'18; Eden, Ron, Seshadhri, STOC'18; Assadi, Kapralov, Khanna, ITCS'18

improvements over linear query bounds in $\tilde{O}(...)$, all essentially tight for cliques sampling exactly subgraph H approximate sampling *approx*. uniformly counting uniformly [GR08] $\frac{n}{\sqrt{m}}$ [ER18] trivial $\frac{m^{\rho(H)}}{^{\#}H}$ [ERS18] $\frac{m^{\rho(H)}}{^{\#}H}$ [ERS18] $\frac{m^{\rho(H)}}{^{\#}H}$ [AKK18] $\frac{m^{\rho(H)}}{\#H}$ [this work] $\frac{m^{\rho(H)}}{\#H}$ [this work] general model / augmented general model $\rho(H)$ is the frac. edge cover size of H, $|H|/2 \le \rho(H) \le |H|$

¹Goldreich, Ron, RS&A'08; Eden, Rosenbaum, SOSA'18; Eden, Ron, Seshadhri, STOC'18; Assadi, Kapralov, Khanna, ITCS'18

Our Results

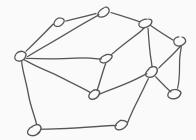
Main Theorem

For any subgraph H, sampling exactly uniformly from all copies of H in an input graph G has expected query and time complexity $\mathcal{O}\left(\frac{m^{\rho(H)}}{\#H}\right)$ in the augmented general model.

This is essentially tight for cliques, even when we require only *almost* uniform sampling.

5

Fractional Edge Covers

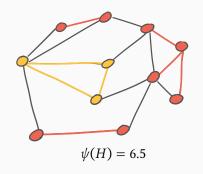


Theorem [AKK18]²

For every graph H, there is a minimum fractional edge cover by vertex-disjoint odd cycles and stars.

²Assadi, Kapralov, Khann, ITCS'18

Fractional Edge Covers



Theorem [AKK18]²

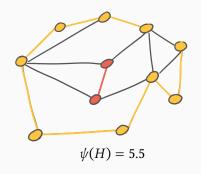
For every graph H, there is a minimum fractional edge cover by vertex-disjoint odd cycles and stars.

The value $\psi_H(C)$ of a cover C is

$$\psi_H(C) = \sum_{\substack{k \in \{3,5,...\} \\ C_k \in C}} \frac{k}{2} + \sum_{\substack{k \in \mathbb{N} \\ S_k \in C}} k.$$

²Assadi, Kapralov, Khann, ITCS'18

Fractional Edge Covers



Theorem [AKK18]²

For every graph H, there is a minimum fractional edge cover by vertex-disjoint odd cycles and stars.

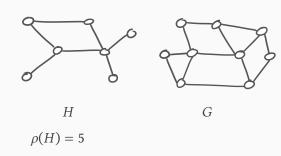
The value $\psi_H(C)$ of a cover C is

$$\psi_H(C) = \sum_{\substack{k \in \{3,5,...\} \\ C_k \in C}} \frac{k}{2} + \sum_{\substack{k \in \mathbb{N} \\ S_k \in C}} k.$$

We define $\rho(H) = \min_C \psi_H(C)$.

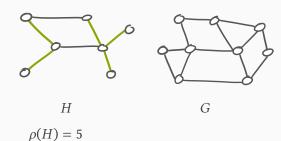
²Assadi, Kapralov, Khann, ITCS'18

for subgraph H and input G:



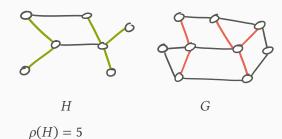
for subgraph *H* and input *G*:

1. compute edge cover of *H*



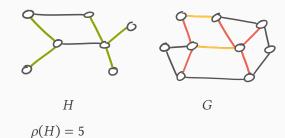
for subgraph *H* and input *G*:

- 1. compute edge cover of H
- 2. sample $\rho(H)$ edges from G



for subgraph *H* and input *G*:

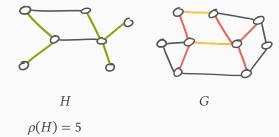
- 1. compute edge cover of H
- 2. sample $\rho(H)$ edges from G
- 3. use pair queries to check for copy of *H*



for subgraph *H* and input *G*:

- 1. compute edge cover of *H*
- 2. sample $\rho(H)$ edges from G
- 3. use pair queries to check for copy of *H*

probability to find fixed $H: \Theta\left(\frac{1}{m^{\rho(H)}}\right)$ expected time to find it: $\Theta(m^{\rho(H)})$

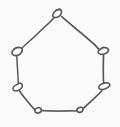


for odd cycles C_k : $\rho(C_k) = \frac{k}{2}$

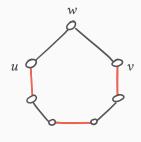
for odd cycles C_k : $\rho(C_k) = \frac{k}{2}$ how to sample $\frac{k}{2}$ edges?

for odd cycles C_k : $\rho(C_k) = \frac{k}{2}$ how to sample $\frac{k}{2}$ edges?

for odd cycles C_k :

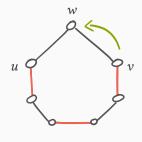


for odd cycles C_k : $\rho(C_k) = \frac{k}{2}$ how to sample $\frac{k}{2}$ edges?



for odd cycles C_k :
1. sample $\frac{k-1}{2}$ edges

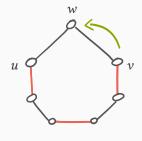
for odd cycles C_k : $\rho(C_k) = \frac{k}{2}$ how to sample $\frac{k}{2}$ edges?



for odd cycles C_k :

- 1. sample $\frac{k-1}{2}$ edges
- 2. sample a common neighbor of u and v

for odd cycles C_k : $\rho(C_k) = \frac{k}{2}$ how to sample $\frac{k}{2}$ edges?

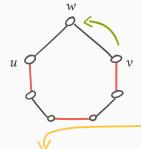


for odd cycles C_k :

- 1. sample $\frac{k-1}{2}$ edges
- 2. sample a common neighbor of u and v

neighbor query probability: $\Pr[w] = \frac{1}{d_v}$ target probability: $\Pr[w] = \Theta\Big(\frac{1}{\sqrt{m}}\Big)$ for all $w \in \Gamma(u) \cap \Gamma(v)$

for odd cycles C_k : $\rho(C_k) = \frac{k}{2}$ how to sample $\frac{k}{2}$ edges?



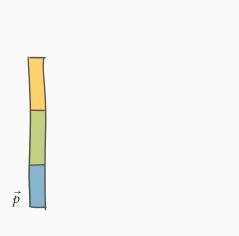
for odd cycles C_k :

- 1. sample $\frac{k-1}{2}$ edges
- 2. sample a common neighbor of u and v

neighbor query probability: $\Pr[w] = \frac{1}{d_v}$ target probability: $\Pr[w] = \Theta(\frac{1}{\sqrt{m}})$

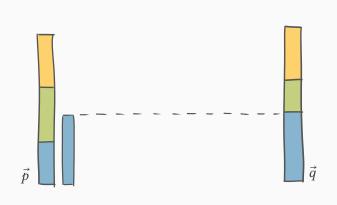
for all $w \in \Gamma(u) \cap \Gamma(v)$

total probability to sample a fixed
$$H: \Theta\left(\frac{1}{m^{(k-1)/2}} \cdot \frac{1}{\sqrt{m}}\right) = \Theta\left(\frac{1}{m^{\rho(C_k)}}\right)$$



Problem

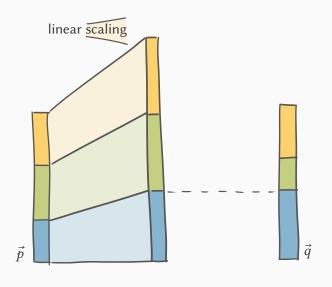
Given samples from distribution \vec{p} on [n], simulate sampling from \vec{q} .



Problem

Given samples from distribution \vec{p} on [n], simulate sampling from \vec{q} .

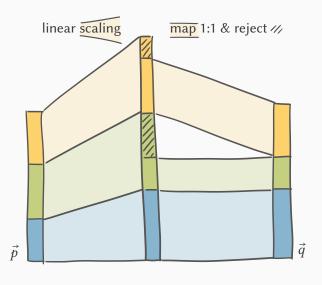
1. scale \vec{p} linearly by factor $s = \max_i \vec{q}(i) / \vec{p}(i)$



Problem

Given samples from distribution \vec{p} on [n], simulate sampling from \vec{q} .

1. scale \vec{p} linearly by factor $s = \max_i \vec{q}(i) / \vec{p}(i)$



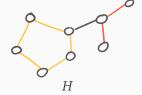
Problem

Given samples from distribution \vec{p} on [n], simulate sampling from \vec{q} .

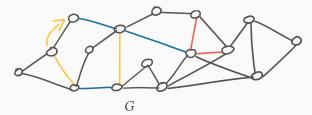
- 1. scale \vec{p} linearly by factor $s = \max_i \vec{q}(i) / \vec{p}(i)$
- 2. sample *o* from \vec{p}
- 3. sample x uniformly from [0, 1]
- 4. accept o if $x \le \vec{q}(o)/(s\vec{p}(o))$, reject and repeat otherwise

9

Algorithm



- 1. decompose *H* into odd cycles *C* and stars *S*
- 2. repeat until success:
 - a. sample edges from ${\cal G}$ as described
 - b. check whether they form a copy of *H* using pair queries



sample H exactly uniformly in $\mathcal{O}\!\left(\frac{m^{\rho(H)}}{^{\#}\!H}\right)$ expected time