Every Testable ∞ Property of Bounded-Degree Graphs Contains an ∞ Hyperfinite ⊆-Property

Hendrik Fichtenberger, Pan Peng, Christian Sohler January 6, 2019

time complexity: $\Omega(|V| + |E|)$

complexity: # queries to adjacency list entries

bounded degree graphs: $\forall v \in V : d(v) \leq d, d \in O(1)$ $q(\epsilon) \qquad \qquad + \text{connected}$

bounded degree graphs: $\forall v \in V: d(v) \leq d, d \in O(1)$ $q(\epsilon) \qquad \qquad \text{connected, degree-regular, cycle-free,} \\ \text{H-free, planar, minor-free, hyperfinite}$

bounded degree graphs: $\forall v \in V: d(v) \leq d, d \in O(1)$ $q(\epsilon) \qquad \qquad \text{connected, degree-regular, cycle-free,} \\ \text{H-free, planar, minor-free, hyperfinite} \\ \Theta(\sqrt{n}) \qquad \qquad \text{bipartite, expander}$

Definition

(ϵ , s)-hyperfinite: can remove at most ϵdn edges to obtain connected components of size at most s

ρ-hyperfinite: (ε, ρ(ε))-hyperfinite for all ε ∈ (0, 1]

Definition

 (ϵ, s) -hyperfinite: can remove at most ϵdn edges to obtain connected components of size at most s

 ρ -hyperfinite: $(\epsilon, \rho(\epsilon))$ -hyperfinite for all $\epsilon \in (0, 1]$

Definition

 (ϵ, s) -hyperfinite: can remove at most ϵdn edges to obtain connected components of size at most s

ρ-hyperfinite: (ε, ρ(ε))-hyperfinite for all ε ∈ (0, 1]

Definition

 (ϵ, s) -hyperfinite: can remove at most ϵdn edges to obtain connected components of size at most s ρ -hyperfinite: $(\epsilon, \rho(\epsilon))$ -hyperfinite for all $\epsilon \in (0, 1]$

, 11

Let $\boldsymbol{\Pi}$ be a bounded-degree graph property

 Π is ho-hyperfinite

 Π has constant query complexity

Let Π be a bounded-degree graph property

Let Π be a bounded-degree graph property

Let Π be a bounded-degree graph property

 $\operatorname{disk}_k(v)$: subgraph induced by BFS(v) of depth k

 $\operatorname{disk}_k(v)$: subgraph induced by BFS(v) of depth k

 $\operatorname{disk}_k(v)$: subgraph induced by BFS(v) of depth k

 $\operatorname{disk}_k(v)$: subgraph induced by BFS(v) of depth k

 $freq_k(G)$: for each k-disk isomorphism type calculate its share of vertices

$$\operatorname{freq}_{2}\left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \hline \Sigma & 1 \end{array}\right) = \begin{pmatrix} 0.4 \\ 0.6 \\ \vdots \\ \bullet & \bullet \\ \hline \end{array}$$

 $\operatorname{disk}_k(v)$: subgraph induced by BFS(v) of depth k

 $freq_k(G)$: for each k-disk isomorphism type calculate its share of vertices

One Thing That is Known

Lemma [Goldreich, Ron, 2009]

Every property tester with query complexity $q(\epsilon)$ can be transformed into an algorithm that

- 1. computes an approximation $\widetilde{\operatorname{freq}}_{cq(\epsilon)}(G)$ of $\operatorname{freq}_{cq(\epsilon)}(G)$
- 2. accepts iff $\|\widetilde{\operatorname{freq}}_{cq(\epsilon)}(G) \operatorname{freq}_{cq(\epsilon)}(G')\|_1 \le \frac{1}{c'q(\epsilon)}$ for any $G' \in \Pi$

Small Frequency-Preserver Graphs

Lemma [Alon, 2010]

For every $\delta, k > 0$, there exists $M(\delta, k)$ such that for every G there exists H of size at most $M(\delta, k)$ and $\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 < \delta$.

Sketch: complement $\overline{\Pi}$ of Π contains hyperfinite subproperty

rel. $\overline{\Pi}$ ϵ -far from Π

size n hypf. ?

freq. v. original change

Sketch: complement Π of Π contains hyperfinite subproperty


```
rel. \overline{\Pi} \epsilon-far from \Pi ? size n M(\delta, k) hypf. ?
```

freq. v. original
$$\delta$$
 change

Sketch: complement Π of Π contains hyperfinite subproperty

Sketch: complement Π of Π contains hyperfinite subproperty

Summary

Let Π be (inf.) constant-query testable property of bounded degree graphs:

- Π contains (inf.) hyperfinite subproperty
- $\overline{\Omega}$ contains (inf.) hyperfinite subproperty
- 3. all $G \in \Pi$ may be far from expander (even if Π is not hyperfinite)
- 4. partitioning theorem that preserves frequency vector of non-expaning subparts