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complexity: # queries to adjacency list entries
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bounded degree graphs: Vv € V : d(v) < d,d € O(1)

q(e) connected, degree-regular, cycle-free,
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V% big picture?
little known about
O(1)-query testability
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we show

Z

L> contains expanders Il cI:

e.g. II = connectivity

Il is p’-hyperfinite
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diskg(v): subgraph induced
by BFS(v) of depth k

diSkl (.)
dlSkz(.)

freq, (G): for each k-disk isomorphism
type calculate its share of vertices

()

>, 1

0
frequency vector is a
locality feature



One Thing That is Known

Lemma [Goldreich, Ron, 2009]
Every property tester with query complexity g(e) can be

transformed into an algorithm that
1. computes an approximation fr\ea (e)(G) of frech(e)(G)

2. accepts iff ||frech(6)(G) frech(e)(G’)"l < for any G’ €11

()



Small Frequency-Preserver Graphs

N

H
S /freqk(H)

G
freq, (G)

-1 >
Lemma [Alon, 2010]
For every 8, k > 0, there exists M(J, k) such that for every G there
exists H of size at most M(J, k) and |freq; (G) - freq, (H)|; < 6.
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Transformation Step

Sketch: -complement-Hof IT contains hyperfinite subproperty

start w/ G € I1

\ freq. pres. blow-up modify
NI GRN /\\/ ST
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rel. IT inII ? e-close to I1 inII

size n M@, k) n n

hypf. ? ? (0, M(6, k))- (e, M(6, k))-
hyperfinite hyperfinite
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Let IT be (inf.) constant-query testable property
of bounded degree graphs:

1. IT contains (inf.) hyperfinite subproperty

2. I contains (inf.) hyperfinite subproperty

3. all G € IT may be far from expander
(even if IT is not hyperfinite)

4. partitioning theorem that preserves frequency
vector of non-expaning subparts



