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connected disconnected disconnected disconnected

reject w.p. > 2
3accept w.p. > 2

3

𝜖 10
# edge edits

|𝑉 |+|𝐸|

𝜖-close 𝜖-far 𝜖-far

complexity: # queries to adjacency list entries
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Property Testing of Bounded Degree Graphs

connected

bounded degree graphs: ∀𝑣 ∈ 𝑉 ∶ 𝑑(𝑣) ≤ 𝑑, 𝑑 ∈ 𝑂(1)
𝑞(𝜖) connected, degree-regular, cycle-free,

H-free, planar, minor-free, hyperfinite

bipartite, expanderΘ(√𝑛)
big picture?
little known about
𝑂(1)-query testability
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Hyperfinite Graphs

Definition
(𝝐, 𝐬)-hyperfinite: can remove at most 𝜖𝑑𝑛 edges to obtain
connected components of size at most 𝑠
𝝆-hyperfinite: (𝜖, 𝜌(𝜖))-hyperfinite for all 𝜖 ∈ (0, 1]
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Hyperfinite Graphs

𝜖 = 0.5
𝜖 = 0.6
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Definition
(𝝐, 𝐬)-hyperfinite: can remove at most 𝜖𝑑𝑛 edges to obtain
connected components of size at most 𝑠
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Result

Let Π be a bounded-degree graph property

Π is 𝜌-hyperfinite Π has constant
query complexity

e.g. Π = connectivity

contains expanders

we show

∃ Π′ ⊆ Π:

Π′ is 𝜌′-hyperfinite
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𝑘-Disks and Frequency Vectors
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disk2( )
disk1( )

disk𝑘(𝑣): subgraph induced
by BFS(𝑣) of depth 𝑘

freq𝑘(𝐺): for each 𝑘-disk isomorphism
type calculate its share of vertices

freq2( ) = (
0.4
0.6
⋮
)

∑ 1

frequency vector is a
locality feature
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One Thing That is Known

accept

reject

1

1

Π

Π

Π Π

Π

Lemma [Goldreich, Ron, 2009]
Every property tester with query complexity 𝑞(𝜖) can be
transformed into an algorithm that

1. computes an approximation f̃req𝑐𝑞(𝜖)(𝐺) of freq𝑐𝑞(𝜖)(𝐺)
2. accepts iff ‖f̃req𝑐𝑞(𝜖)(𝐺) − freq𝑐𝑞(𝜖)(𝐺′)‖1 ≤ 1

𝑐′𝑞(𝜖) for any 𝐺′ ∈ Π
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Small Frequency-Preserver Graphs

freq𝑘(𝐺)

freq𝑘(𝐻)𝛿

𝐺

𝐻

𝑛

𝑀(𝛿, 𝑘)

Lemma [Alon, 2010]
For every 𝛿, 𝑘 > 0, there exists 𝑀(𝛿, 𝑘) such that for every 𝐺 there
exists 𝐻 of size at most 𝑀(𝛿, 𝑘) and ‖freq𝑘(𝐺) − freq𝑘(𝐻)‖1 < 𝛿 .
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Transformation Step

𝑛size
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freq. v.
change

original

Sketch: complement Π of Π contains hyperfinite subproperty
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rel. 𝚷 𝜖-far from Π

8



Transformation Step

𝑛size
hypf. ?

freq. v.
change

original

Sketch: complement Π of Π contains hyperfinite subproperty

start w/ 𝐺 𝜖-far from Π

rel. 𝚷 𝜖-far from Π
𝑀(𝛿, 𝑘)

freq. pres.

?

?

< 𝛿

8



Transformation Step

𝑛size
hypf. ?

freq. v.
change

original

Sketch: complement Π of Π contains hyperfinite subproperty

start w/ 𝐺 𝜖-far from Π

rel. 𝚷 𝜖-far from Π
𝑀(𝛿, 𝑘)
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?
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Transformation Step

𝑛size
hypf. ?

freq. v.
change

original

Sketch: complement Π of Π contains hyperfinite subproperty

𝑀(𝛿, 𝑘)

freq. pres.

?

?

< 𝛿

𝑛
(0,𝑀(𝛿, 𝑘))-
hyperfinite

blow-up

= 0

start w/ 𝐺 ∈ Π

in Π
𝑛
(𝜖,𝑀(𝛿, 𝑘))-
hyperfinite

modify

< 𝛿

rel. 𝚷 in Π 𝜖-close to Π
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Summary

Let Π be (inf.) constant-query testable property
of bounded degree graphs:
1. Π contains (inf.) hyperfinite subproperty

2. Π contains (inf.) hyperfinite subproperty

3. all 𝐺 ∈ Π may be far from expander
(even if Π is not hyperfinite)

4. partitioning theorem that preserves frequency
vector of non-expaning subparts
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