Distributed Testing of Conductance

Hendrik Fichtenberger, Yadu Vasudev August 31, 2018

Sublinear Graph Algorithms

classic / global algorithm see everything complexity $\Omega(n)$ output solution

Sublinear Graph Algorithms

classic / global algorithm see everything complexity $\Omega(n)$ output solution

sublinear algorithm
see only small parts
complexity o(n)
estimate solution's value

Property Testing

Given a graph G = (V, E), decide with prob. $\geq 2/3$

C₃-free accept

 ϵ -close to C_3 -free don't care

 ϵ -far from C_3 -free reject

distance " ϵ -far from" = need to modify more than $\epsilon |E|$ edges

- input graph G = (V, E)
- each vertex has $id \in poly(n)$
- processor on each vertex $v \in V$

- input graph G = (V, E)
- each vertex has id \in poly(n)
- processor on each vertex $v \in V$
- synchronized rounds one round for vertex $v \in V$:
 - 1. unlimited local computation
 - 2. $\forall u \in \Gamma(v)$: send $O(\log n)$ bits to u
 - 3. $\forall u \in \Gamma(v)$: receive message from u

- input graph G = (V, E)
- each vertex has id \in poly(n)
- processor on each vertex $v \in V$
- synchronized rounds one round for vertex $v \in V$:
 - 1. unlimited local computation
 - 2. $\forall u \in \Gamma(v)$: send $O(\log n)$ bits to u
 - 3. $\forall u \in \Gamma(v)$: receive message from u
- · after last round
 - every vertex votes accept or reject
 - tester rejects iff at least one vertex votes reject

- input graph G = (V, E)
- each vertex has id \in poly(n)
- processor on each vertex $v \in V$
- synchronized rounds one round for vertex $v \in V$:
 - 1. unlimited local computation
 - 2. $\forall u \in \Gamma(v)$: send $O(\log n)$ bits to u
 - 3. $\forall u \in \Gamma(v)$: receive message from u
- after last round
 - every vertex votes accept or reject
 - tester rejects iff at least one vertex votes reject
- complexity measure: #rounds

For
$$S \subseteq V \bullet$$
, $\Phi(S) = \frac{|E(S, V \setminus S)| \bullet}{|(S \times V) \cap E| \bullet \bullet}$

For
$$S \subseteq V \bullet$$
, $\Phi(S) = \frac{|E(S, V \setminus S)| \bullet}{|(S \times V) \cap E| \bullet \bullet}$

For
$$S \subseteq V \bullet$$
, $\Phi(S) = \frac{|E(S, V \setminus S)| \bullet}{|(S \times V) \cap E| \bullet \bullet}$

$$\Phi(G) = \min_{\substack{S \subseteq V \\ |E(S,S)| \le |E(\bar{S},\bar{S})|}} \Phi(S)$$

Testing of Conductance

Theorem

There is a tester for conductance Φ in the CONGEST model with round complexity $O(\frac{\log n}{\epsilon \Phi^2})$, and a lower bound of $\Omega(\log n)$.

Testing of Conductance

Theorem

There is a tester for conductance Φ in the CONGEST model with round complexity $O(\frac{\log n}{\epsilon \Phi^2})$, and a lower bound of $\Omega(\log n)$.

- tester works also for connected graphs of unknown size
- votes can be made all accept / all reject

· random walker starts on $s \in V$

- random walker starts on $s \in V$
- goes $u \to v$, $v \in \Gamma(u)$ with probability

$$p(v, u) = \begin{cases} \frac{1}{2d(u)} & \text{if } u \neq v \\ \frac{1}{2} & \text{if } u = v \end{cases}$$

- random walker starts on $s \in V$
- goes $u \to v$, $v \in \Gamma(u)$ with probability

$$p(v, u) = \begin{cases} \frac{1}{2d(u)} & \text{if } u \neq v \\ \frac{1}{2} & \text{if } u = v \end{cases}$$

- random walker starts on $s \in V$
- goes $u \to v$, $v \in \Gamma(u)$ with probability

$$p(v, u) = \begin{cases} \frac{1}{2d(u)} & \text{if } u \neq v \\ \frac{1}{2} & \text{if } u = v \end{cases}$$

- random walker starts on $s \in V$
- goes $u \to v$, $v \in \Gamma(u)$ with probability

$$p(v, u) = \begin{cases} \frac{1}{2d(u)} & \text{if } u \neq v \\ \frac{1}{2} & \text{if } u = v \end{cases}$$

- random walker starts on $s \in V$
- goes $u \to v$, $v \in \Gamma(u)$ with probability

$$p(v, u) = \begin{cases} \frac{1}{2d(u)} & \text{if } u \neq v \\ \frac{1}{2} & \text{if } u = v \end{cases}$$

stationary distribution

$$\vec{\pi}_{\text{V}} = d(\text{V})/(2m)$$

- random walker starts on $s \in V$
- goes $u \to v$, $v \in \Gamma(u)$ with probability

$$p(v, u) = \begin{cases} \frac{1}{2d(u)} & \text{if } u \neq v \\ \frac{1}{2} & \text{if } u = v \end{cases}$$

stationary distribution

$$\vec{\pi}_{V} = d(V)/(2m)$$

 \cdot walk mixes, that is, converges to $ec{\pi}$

$$\lim_{t\to\infty} \|P^t \vec{\mathbb{1}}_s - \vec{\boldsymbol{\pi}}\| = 0$$

idea test for vertices with large mixing time

idea test for vertices with large mixing time algorithm 1. sample $\Theta(1/\epsilon)$ vertices $S \bullet \bullet$

idea test for vertices with large mixing time

- algorithm 1. sample $\Theta(1/\epsilon)$ vertices $S \bullet \bullet$
 - 2. perform poly(n) random walks from S

idea test for vertices with large mixing time

- algorithm 1. sample $\Theta(1/\epsilon)$ vertices $S \bullet \bullet$
 - 2. perform poly(n) random walks from S

Idea of the Algorithm

idea test for vertices with large mixing time

- algorithm 1. sample $\Theta(1/\epsilon)$ vertices $S \bullet \bullet$
 - 2. perform poly(n) random walks from S

Idea of the Algorithm

idea test for vertices with large mixing time

- algorithm 1. sample $\Theta(1/\epsilon)$ vertices $S \bullet \bullet$
 - 2. perform poly(n) random walks from S
 - 3. check if walks for some $v \in S$ mixed poorly after $\Theta(\log n)$ steps

Idea of the Algorithm

idea test for vertices with large mixing time

- algorithm 1. sample $\Theta(1/\epsilon)$ vertices $S \bullet \bullet$
 - 2. perform poly(n) random walks from S
 - 3. check if walks for some $v \in S$ mixed poorly after $\Theta(\log n)$ steps

...but keeping all traces is costly: > poly(n) bits

1. attempt: transmit full traces

1. attempt: transmit full traces can approximate $\|P^t\vec{\mathbb{1}}_s - \pi\| \ \forall s \in S$

1. attempt: transmit full traces can approximate $\|P^t\vec{\mathbb{1}}_s - \pi\| \ \forall s \in S$ but $\log n \cdot \operatorname{poly}(n) = \Omega(n)$ rounds

- 1. attempt: transmit full traces can approximate $\|P^t\vec{\mathbb{1}}_s \pi\| \ \forall s \in S$ but $\log n \cdot \operatorname{poly}(n) = \Omega(n)$ rounds
- 2. attempt: transmit only tokens

- 1. attempt: transmit full traces can approximate $\|P^t\vec{\mathbb{1}}_s \pi\| \ \forall s \in S$ but $\log n \cdot \operatorname{poly}(n) = \Omega(n)$ rounds
- 2. attempt: transmit only tokens requires only $\mathcal{O}(\log n)$ rounds

- 1. attempt: transmit full traces can approximate $||P^t\vec{\mathbb{1}}_s \pi|| \ \forall s \in S$ but $\log n \cdot \operatorname{poly}(n) = \Omega(n)$ rounds
- 2. attempt: transmit only tokens requires only $\mathcal{O}(\log n)$ rounds but approx. $\|P^t \frac{1}{|S|} \sum_{s \in S} \vec{\mathbb{1}}_s \pi\|$ only

- 1. attempt: transmit full traces can approximate $\|P^t\vec{\mathbb{1}}_s \pi\| \ \forall s \in S$ but $\log n \cdot \operatorname{poly}(n) = \Omega(n)$ rounds
- 2. attempt: transmit only tokens requires only $\mathcal{O}(\log n)$ rounds but approx. $\|P^t \frac{1}{|S|} \sum_{s \in S} \vec{\mathbb{1}}_s \pi\|$ only
- 3. attempt: transmit start vertices

- 1. attempt: transmit full traces can approximate $\|P^t\vec{\mathbb{1}}_s \pi\| \ \forall s \in S$ but $\log n \cdot \operatorname{poly}(n) = \Omega(n)$ rounds
- 2. attempt: transmit only tokens requires only $\mathcal{O}(\log n)$ rounds but approx. $\|P^t \frac{1}{|S|} \sum_{s \in S} \vec{\mathbb{1}}_s \pi\|$ only
- 3. attempt: transmit start vertices can approximate $\|P^t\vec{\mathbb{1}}_s \pi\| \ \forall s \in S$

- 1. attempt: transmit full traces can approximate $\|P^t\vec{\mathbb{1}}_s \pi\| \ \forall s \in S$ but $\log n \cdot \operatorname{poly}(n) = \Omega(n)$ rounds
- 2. attempt: transmit only tokens requires only $\mathcal{O}(\log n)$ rounds but approx. $\|P^t\frac{1}{|S|}\sum_{s\in S}\vec{\mathbb{1}}_s \pi\|$ only
- 3. attempt: transmit start vertices can approximate $\|P^t\vec{\mathbb{1}}_s \pi\| \ \forall s \in S$ requires only $\mathcal{O}(\log n)$ rounds

Summary

Theorem

There is a tester for conductance Φ in the CONGEST model with round complexity $O(\frac{\log n}{\epsilon\Phi^2})$, and a lower bound of $\Omega(\log n)$.

· lower bound is based on high girth expander graphs

Summary

Theorem

There is a tester for conductance Φ in the CONGEST model with round complexity $O(\frac{\log n}{\epsilon \Phi^2})$, and a lower bound of $\Omega(\log n)$.

- · lower bound is based on high girth expander graphs
- first two-sided error distributed tester
 - voting rule taken from one-sided error testing
 - power of other rules?

Summary

Theorem

There is a tester for conductance Φ in the CONGEST model with round complexity $O(\frac{\log n}{\epsilon \Phi^2})$, and a lower bound of $\Omega(\log n)$.

- · lower bound is based on high girth expander graphs
- · first two-sided error distributed tester
 - voting rule taken from one-sided error testing
 - · power of other rules?
- · lower bound for one-sided error tester of conductance?