ON CONSTANT-SIZE GRAPHS THAT PRESERVE THE LOCAL STRUCTURE OF HIGH-GIRTH GRAPHS

H. F., PAN PENG, CHRISTIAN SOHLER

Hendrik Fichtenberger

26. August 2015

TU Dortmund, Germany

• There are many ways to define the *local structure* of a graph

- There are many ways to define the *local structure* of a graph
- We are interested in the local structure of vertices ...

- There are many ways to define the *local structure* of a graph
- We are interested in the local structure of vertices ...
- ... and the subgraph around them

- There are many ways to define the *local structure* of a graph
- We are interested in the local structure of vertices
- ... and the subgraph

 around them
- We will summarize over all vertices in a graph

• Let

- G = (V, E) be a graph
- $k \ge 0$ be an integer

k = 2

• Let

- G = (V, E) be a graph
- $k \ge 0$ be an integer
- $u \in V \bullet$ be a node

k = 2

k = 2

• Let

- G = (V, E) be a graph
- $k \ge 0$ be an integer
- $u \in V \bullet$ be a node
- *k*-disc of *u*:
 - Subgraph induced by all vertices

 within distance at most k to u
 - Rooted at u

- Let
 - G = (V, E) be a graph
 - $\cdot k \ge 0$ be an integer

k = 1

- Let
 - G = (V, E) be a graph
 - $\cdot k \ge 0$ be an integer
- freq_k(G): k-disc frequency vector
 - Vector indexed by all *k*-disc isomorphism types
 - Counts the fraction of each type of *k*-disc in *G*

- Let
 - G = (V, E) be a graph
 - $\cdot k \ge 0$ be an integer
- freq_k(G): k-disc frequency vector
 - Vector indexed by all *k*-disc isomorphism types
 - Counts the fraction of each type of *k*-disc in *G*

- Let
 - G = (V, E) be a graph
 - $\cdot k \ge 0$ be an integer
- freq_k(G): k-disc frequency vector
 - Vector indexed by all *k*-disc isomorphism types
 - Counts the fraction of each type of *k*-disc in *G*

From now on

- All graphs are undirected and have maximum degree d
- *d* and *k* are some constants

Question

[http://sublinear.info/42]

Given $\epsilon, k > 0$ and a bounded-degree graph *G*, is there always a small graph *H* of size $f(\epsilon, d, k)$ such that

 $\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 \le \epsilon$?

Intuition Approximate the local structure of a large bounded-degree graph by a constant-size graph

Question

[http://sublinear.info/42]

Given $\epsilon, k > 0$ and a bounded-degree graph *G*, is there always a small graph *H* of size $f(\epsilon, d, k)$ such that

 $\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 \le \epsilon$?

Intuition Approximate the local structure of a large bounded-degree graph by a constant-size graph
 Answer Yes! There is a simple proof by Alon¹.
 However, no (explicit) bound on |V(H)| is known.

¹see Lovász, Large Networks and Graph Limits, 2012

Question

[http://sublinear.info/42]

Given $\epsilon, k > 0$ and a bounded-degree graph *G*, is there always a small graph *H* of size $f(\epsilon, d, k)$ such that

 $\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 \le \epsilon$?

Intuition Approximate the local structure of a large bounded-degree graph by a constant-size graph

Answer Yes! There is a simple proof by Alon¹. However, no (explicit) bound on |V(H)| is known.

In this talk Bound for special case where all k-discs are trees

¹see Lovász, Large Networks and Graph Limits, 2012

Theorem

Given query access to the adjacency lists of a graph *G* with girth > 2k + 1 and with maximum degree *d*, the algorithm outputs a graph *H* of size at most $f_1(d, k) \cdot e^{-2} \delta^{-1}$ that satisfies

 $\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 \le \epsilon$

with probability $1 - \delta$. Its running time is independent of G.

Theorem

Given query access to the adjacency lists of a graph *G* with girth > 2k + 1 and with maximum degree *d*, the algorithm outputs a graph *H* of size at most $f_1(d, k) \cdot e^{-2} \delta^{-1}$ that satisfies

 $\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 \le \epsilon$

with probability $1 - \delta$. Its running time is independent of G.

Relations • Regularity lemma and graph limits²

• Property Testing³

 ²see Elek, On the Limit of Large Girth Graph Sequences, 2010
 ³e.g., Newman, Sohler, Every Property of Hyperfinite Graphs Is Testable, 2011

IDEA OF THE CONSTRUCTION

Task Given G = (V, E), construct small graph H with similar k-disc distribution

Idea 1. Sample a small set of vertices V₁ \bigcirc

IDEA OF THE CONSTRUCTION

Task Given G = (V, E), construct small graph H with similar k-disc distribution
Idea 1. Sample a small set of vertices V₁ ●
2. For every k-disc type Δ, we picked (fraction of Δ in G ± ε) · |V₁| vertices with k-disc Δ w.h.p.

IDEA OF THE CONSTRUCTION

Task Given G = (V, E), construct small graph H with similar k-disc distribution

Idea 1. Sample a small set of vertices $V_1 \bullet$

2. For every *k*-disc type Δ , we picked

(fraction of Δ in $G \pm \epsilon$) $\cdot |V_1|$

vertices with *k*-disc Δ w.h.p.

- 3. We would like to choose $H := G[V_1]$
 - $E(V_1, V \setminus V_1)$ might be large
 - Deleting all these edges alters many *k*-discs
 - Need a way to reduce size of cut...

Observation 1

A k-disc is the union of the (k-1)-discs of its root's neighbors

Observation 1

A k-disc is the union of the (k-1)-discs of its root's neighbors

Observation 2

If G has girth > 2k + 1, then all its k-discs are trees

Observation 1

A k-disc is the union of the (k-1)-discs of its root's neighbors

Observation 2

If G has girth > 2k + 1, then all its k-discs are trees

Observation 1

A k-disc is the union of the (k-1)-discs of its root's neighbors

Observation 2

If G has girth > 2k + 1, then all its k-discs are trees

Observation 1

A k-disc is the union of the (k-1)-discs of its root's neighbors

Observation 2

If G has girth > 2k + 1, then all its k-discs are trees

Observation 1

A k-disc is the union of the (k-1)-discs of its root's neighbors

Observation 2

If G has girth > 2k + 1, then all its k-discs are trees

Observation 1

A k-disc is the union of the (k-1)-discs of its root's neighbors

Observation 2

If G has girth > 2k + 1, then all its k-discs are trees

Rewiring Change edges without changing k-disc of ●
Remark To do this, k-disc must be cycle-free

1. Let

- V_1 be our sample, $V_2 := V \setminus V_1$
- Δ_1, Δ_2 be *k*-disc isomorphism types
- 2. Assume that there is
 - an edge $(x_1, y_2) \in V_1 \times V_2$ s.t. disc_k $(x_1) \simeq \Delta_1 \bullet$, disc_k $(y_2) \simeq \Delta_2 \bullet$

1. Let

- V_1 be our sample, $V_2 := V \setminus V_1$
- Δ_1, Δ_2 be *k*-disc isomorphism types
- 2. Assume that there is
 - an edge $(x_1, y_2) \in V_1 \times V_2$ s.t. disc_k $(x_1) \simeq \Delta_1 \bullet$, disc_k $(y_2) \simeq \Delta_2 \bullet$
 - an edge $(y_1, x_2) \in V_1 \times V_2$ s.t.

$$\operatorname{disc}_k(y_1) \simeq \Delta_2 \bullet$$
, $\operatorname{disc}_k(x_2) \simeq \Delta_1 \bullet$

1. Let

- V_1 be our sample, $V_2 := V \setminus V_1$
- Δ_1, Δ_2 be *k*-disc isomorphism types
- 2. Assume that there is
 - an edge $(x_1, y_2) \in V_1 \times V_2$ s.t. disc_k $(x_1) \simeq \Delta_1 \bullet$, disc_k $(y_2) \simeq \Delta_2 \bullet$
 - an edge $(y_1, x_2) \in V_1 \times V_2$ s.t.
 - $\operatorname{disc}_k(y_1) \simeq \Delta_2 \bullet$, $\operatorname{disc}_k(x_2) \simeq \Delta_1 \bullet$
 - {disc_k(x₁), disc_k(y₂)} and
 {disc_k(y₁), disc_k(x₂)} do not overlap

1. Let

- V_1 be our sample, $V_2 := V \setminus V_1$
- Δ_1, Δ_2 be *k*-disc isomorphism types
- 2. Assume that there is
 - an edge $(x_1, y_2) \in V_1 \times V_2$ s.t. disc_k $(x_1) \simeq \Delta_1 \bigoplus$, disc_k $(y_2) \simeq \Delta_2 \bigoplus$
 - an edge $(y_1, x_2) \in V_1 \times V_2$ s.t.
 - $\operatorname{disc}_k(y_1) \simeq \Delta_2 \bullet$, $\operatorname{disc}_k(x_2) \simeq \Delta_1 \bullet$
 - {disc_k(x₁), disc_k(y₂)} and
 {disc_k(y₁), disc_k(x₂)} do not overlap

3. Then, we

- remove $(x_1, y_2), (y_1, x_2)$ and then
- insert $(x_1, y_1), (y_2, x_2)$

Lemma

One can rewire edges without changing the k-disc distribution of G until the cut between V_1 and V_2 has size at most f(d, k).

Lemma

One can rewire edges without changing the k-disc distribution of G until the cut between V_1 and V_2 has size at most f(d, k).

Proof considers two cases:

- There are two edges with the same pair of k-discs that are not too close
 - \rightarrow rewiring changes no *k*-disc up to isomorphism

Lemma

One can rewire edges without changing the k-disc distribution of G until the cut between V_1 and V_2 has size at most f(d, k).

Proof considers two cases:

- There are two edges with the same pair of k-discs that are not too close
 - \rightarrow rewiring changes no *k*-disc up to isomorphism
- 2. No such edges exist $\rightarrow |E(V_1, V_2)|$ is small

Case 1: Edges can be rewired

• Find an edge (x_1, y_2) and a counterpart (y_1, x_2) at distance $\geq 2k + 1$ for rewiring

Case 1: Edges can be rewired

- Find an edge (x_1, y_2) and a counterpart (y_1, x_2) at distance $\geq 2k + 1$ for rewiring
- Remove $(x_1, y_2), (y_1, x_2)$ and add $(x_1, y_1), (x_2, y_2)$ \rightarrow size of cut decreases

Case 1: Edges can be rewired

- Find an edge (x_1, y_2) and a counterpart (y_1, x_2) at distance $\geq 2k + 1$ for rewiring
- Remove $(x_1, y_2), (y_1, x_2)$ and add $(x_1, y_1), (x_2, y_2)$ \rightarrow size of cut decreases
- Prove that
 - *k*-discs before and after rewiring are isomorphic
 - graph has still high girth

Case 2: No edge can be rewired

- For all *k*-discs Δ_1 , Δ_2 :
 - $|E(V_1 \times V_2) \cap (\Delta_1 \bullet, \Delta_2 \bullet)| \approx |E(V_1 \times V_2) \cap (\Delta_2 \bullet, \Delta_1 \bullet)|$

Case 2: No edge can be rewired

- For all *k*-discs Δ_1 , Δ_2 :
 - $|E(V_1 \times V_2) \cap (\Delta_1 \bullet, \Delta_2 \bullet)|$

 $\approx |E(V_1 \times V_2) \cap (\Delta_2 \bullet, \Delta_1 \bullet)|$

• Let (x_1, y_2) be an edge from $E(V_1, V_2) \cap (\Delta_1, \Delta_2)$

Case 2: No edge can be rewired

- For all *k*-discs Δ_1 , Δ_2 :
 - $|E(V_1 \times V_2) \cap (\Delta_1 \bullet, \Delta_2 \bullet)|$

 $\approx |E(V_1 \times V_2) \cap (\Delta_2 \bullet, \Delta_1 \bullet)|$

- Let (x_1, y_2) be an edge from $E(V_1, V_2) \cap (\Delta_1, \Delta_2)$
- If we cannot find (y_1, x_2) , then $E(V_1, V_2) \cap (\Delta_2, \Delta_1)$ is small

Case 2: No edge can be rewired

- For all *k*-discs Δ_1 , Δ_2 :
 - $|E(V_1 \times V_2) \cap (\Delta_1 \bullet, \Delta_2 \bullet)|$

 $\approx |E(V_1 \times V_2) \cap (\Delta_2 \bullet, \Delta_1 \bullet)|$

- Let (x_1, y_2) be an edge from $E(V_1, V_2) \cap (\Delta_1, \Delta_2)$
- If we cannot find (y_1, x_2) , then $E(V_1, V_2) \cap (\Delta_2, \Delta_1)$ is small
- Hence, $E(V_1, V_2) \cap (\Delta_1, \Delta_2)$ is small

Case 2: No edge can be rewired

- For all *k*-discs Δ_1 , Δ_2 :
 - $|E(V_1 \times V_2) \cap (\Delta_1 \bullet, \Delta_2 \bullet)|$

 $\approx |E(V_1 \times V_2) \cap (\Delta_2 \bullet, \Delta_1 \bullet)|$

- Let (x_1, y_2) be an edge from $E(V_1, V_2) \cap (\Delta_1, \Delta_2)$
- If we cannot find (y_1, x_2) , then $E(V_1, V_2) \cap (\Delta_2, \Delta_1)$ is small
- Hence, $E(V_1, V_2) \cap (\Delta_1, \Delta_2)$ is small
- Remove all edges in $E(V_1, V_2)$ \rightarrow only few k-discs are changed

Input Graph G = (V, E) with girth > 2k + 1Algorithm 1. Sample small set of vertices $V_1 \bullet$

Input Graph G = (V, E) with girth > 2k + 1Algorithm 1. Sample small set of vertices $V_1 \bullet$ 2. Rewire edges in cut of V_1 and $V_2 := V \setminus V_1$ as long as possible

Input Graph G = (V, E) with girth > 2k + 1

Algorithm 1. Sample small set of vertices $V_1 \bullet$

2. Rewire edges in cut of V_1 and

 $V_2 := V \setminus V_1$ as long as possible

3. Remove remaining edges between V_1 and V_2

Input Graph G = (V, E) with girth > 2k + 1Algorithm 1. Sample small set of vertices $V_1 \bullet$ 2. Rewire edges in cut of V_1 and $V_2 := V \setminus V_1$ as long as possible 3. Remove remaining edges between V_1 and V_2

Output $H := G[V_1]$

Theorem

Given query access to the adjacency lists of a graph *G* with girth > 2k + 1 and with maximum degree *d*, the algorithm outputs a graph *H* of size at most $f_1(d, k) \cdot e^{-2} \delta^{-1}$ that satisfies

$$\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 \le \epsilon$$

with probability $1 - \delta$. Its running time is independent of G.

Theorem

Given query access to the adjacency lists of a graph *G* with girth > 2k + 1 and with maximum degree *d*, the algorithm outputs a graph *H* of size at most $f_1(d, k) \cdot e^{-2} \delta^{-1}$ that satisfies

$$\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 \le \epsilon$$

with probability $1 - \delta$. Its running time is independent of G.

Remark Using a deterministic, linear-time algorithm we can improve the bound to $|V(H)| \le f_2(d, k)/\epsilon$.

Let *L* be the dimension of the *k*-disc frequency vector.

Theorem

Given query access to the adjacency lists of a graph *G* with girth > 2k + 1 and with maximum degree *d*, the algorithm outputs a graph *H* of size at most $\frac{300d^{3k+2}L^3}{\epsilon^{2\delta}}$ that satisfies

$$\|\operatorname{freq}_k(G) - \operatorname{freq}_k(H)\|_1 \le \epsilon$$

with probability $1 - \delta$. Its running time is independent of G.

Remark Using a deterministic, linear-time algorithm we can improve the bound to $|V(H)| \leq \frac{36d^{3k+2}L}{\epsilon}$.

- Bertinoro Workshop on Sublinear Algorithms 2011.
 Open Problems in Data Streams, Property Testing, and Related Topics. http://sublinear.info/42.
- 📔 L. Lovász.

Large Networks and Graph Limits.

🔋 G. Elek.

On the Limit of Large Girth Graph Sequences.

I. Newman and C. Sohler.

Every Property of Hyperfinite Graphs Is Testable.