ON CONSTANT-SIZE GRAPHS THAT PRESERVE THE
LOCAL STRUCTURE OF HIGH-GIRTH GRAPHS

H. F., PAN PENG, CHRISTIAN SOHLER

Hendrik Fichtenberger
26. August 2015

TU Dortmund, Germany



LOCAL STRUCTURE IN GRAPHS

- There are many ways to
define the local structure of
a graph

Map: © OpenStreetMap contributors, see http:/ /www.openstreetmap.org/copyright



LOCAL STRUCTURE IN GRAPHS

- There are many ways to
define the local structure of
a graph

- We are interested in the local
structure of vertices @ ...

Map: © OpenStreetMap contributors, see http:/ /www.openstreetmap.org/copyright



LOCAL STRUCTURE IN GRAPHS

- There are many ways to
define the local structure of
a graph

- We are interested in the local
structure of vertices @ ...

- ...and the subgraph
around them

Map: © OpenStreetMap contributors, see http:/ /www.openstreetmap.org/copyright



LOCAL STRUCTURE IN GRAPHS

- There are many ways to
define the local structure of
a graph

- We are interested in the local
structure of vertices @ ...

- ...and the subgraph
around them

- We will summarize over all
vertices in a graph

Map: © OpenStreetMap contributors, see http:/ /www.openstreetmap.org/copyright
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LOCAL STRUCTURE IN GRAPHS

- Let

OO0 @®
- G=(V,E) be a graph
0.4 ~ @O - k>0 be an integer
0.6 | « OO0 + freq,(G): k-disc frequency vector
0 - Vector indexed by all k-disc
: isomorphism types
- Counts the fraction of each type of
k=1 k-disc in G
From now on

- All graphs are undirected and have maximum degree d

- d and k are some constants
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bounded-degree graph by a constant-size graph
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Question

Given ¢, kR > 0 and a bounded-degree graph G, is there always
a small graph H of size f(e, d, k) such that

Ifreq,(G) — frequ(H)llh < €?

Intuition Approximate the local structure of a large
bounded-degree graph by a constant-size graph
Answer Yes! There is a simple proof by Alon™.
However, no (explicit) bound on |V(H)] is known.

In this talk Bound for special case where all k-discs are trees

'see Lovasz, Large Networks and Graph Limits, 20712



RESULT

Theorem

Given query access to the adjacency lists of a graph G with
girth > 2k + 1 and with maximum degree d, the algorithm
outputs a graph H of size at most f(d, k) -e=26~" that satisfies

[freqx(G) —freqx(H)l < e

with probability 1 — 4. Its running time is independent of G.




RESULT

Theorem

Given query access to the adjacency lists of a graph G with
girth > 2k + 1 and with maximum degree d, the algorithm
outputs a graph H of size at most f(d, k) -e=26~" that satisfies

[freqr(G) — freqy(H)[ly <€
with probability 1 — 4. Its running time is independent of G.

Relations - Regularity lemma and graph limits?
- Property Testing?

Zsee Elek, On the Limit of Large Girth Graph Sequences, 2010
3e.g, Newman, Sohler, Every Property of Hyperfinite Graphs Is Testable, 2011
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IDEA OF THE CONSTRUCTION

Task Given G = (V,E), construct small graph H
with similar k-disc distribution

G Idea 1. Sample a small set of vertices V; @
2. For every k-disc type A, we picked
(fraction of Ain G+ €) - |V
vertices with k-disc A w.h.p.
Vi 3. We would like to choose H := G[V1]
- E(Wy, V\ V4) might be large
- Deleting all these edges alters many
k-discs
- Need a way to reduce size of cut...
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LOCAL STRUCTURE AND HIGH GIRTH

Observation 1

A R-disc is the wunion of the
(R —1)-discs of its root’s neighbors

Observation 2

If G has girth > 2k + 1, then all its
k-discs are trees

Rewiring Change edges without
changing k-disc of @

Remark To do this, k-disc must be
k=2 cycle-free
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40 2. Assume that there is

= y2 - an edge (x1,y;) € Vi x Vo st
discr(x1) ~ A1 @, discr(ya) ~ A,
- an edge (y1,x) € Vi x V; st

. discr(y1) ~ A, @, discp(x) ~ A @
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REWIRING EDGES IN THE CUT

1. Let
-V be our sample, V, := V\ V,
- A4, A, be k-disc isomorphism types

40 2. Assume that there is

= y2 - an edge (x1,y;) € Vi x Vo st
discr(x1) ~ A1 @, discr(ya) ~ A,
- an edge (yi,%) € V4 x V, st
. discr(y1) ~ A, @, discp(x) ~ A @
¥1 Xo - {discp(x1), disce(y2)} and
{discg(y1), discr(x2)} do not overlap
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REWIRING EDGES IN THE CUT

1. Let
-V be our sample, V, := V\ V,
- A4, A, be k-disc isomorphism types
2. Assume that there is
- an edge (x1,y;) € Vi x Vo st
discr(x1) ~ A1 @, discr(ya) ~ A,
- an edge (yi,%) € V4 x V, st
discr(y1) ~ A, @, discp(x) ~ A @
¥1 Xo - {discp(x1), disce(y2)} and
{discg(y1), discr(x2)} do not overlap

X1 ¥2

3. Then, we
- remove (x1,Y2), (v1,X2) and then
ViV - insert (x, 1), (V2, X2)
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MAIN TECHNICAL LEMMA

Lemma

One can rewire edges without changing the k-disc distribution
of G until the cut between V4 and V, has size at most f(d, R).

Proof considers two cases:

9_ 1. There are two edges with the
P X1 2y same pair of k-discs that are
J22k+1 { not too close
\ /= 2k+1 — rewiring changes no R-disc

Y1 X2 up to isomorphism

2. No such edges exist
— |E(V4, V2)] is small




SKETCH OF THE PROOF

Case 1: Edges can be rewired

- Find an edge (x1,¥,2) and a
counterpart (yr,x;) at
;._\ distance > 2k + 1 for rewiring
X1 2

1 X2
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X1

1

Vi

y2

X2

- Find an edge (x1,¥,2) and a
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SKETCH OF THE PROOF

Case 1: Edges can be rewired

X1

1

Vi

y2

X2

- Find an edge (x1,¥,2) and a

counterpart (yr,x;) at
distance > 2k + 1 for rewiring

- Remove (x1,¥2), (y1,X2) and

add (x1,¥1), (%2, ¥2)
— size of cut decreases

- Prove that

- k-discs before and after
rewiring are isomorphic
- graph has still high girth
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Case 2: No edge can be rewired

- For all k-discs A4, Ay:
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X1 Y2

)41 X2
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Case 2: No edge can be rewired

- For all k-discs A4, Ay:
’E(V1 X V2) N (A1 o, JAVS )|

%’E(\A X Vz) N (AQ , A\ .)|
- Let (x1,y2) be an edge from
X1 Y2 E(V'\,Vz) Q(A1,A2)

)41 X2
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Case 2: No edge can be rewired

- For all k-discs A4, Ay:
|E(Vh x Vo) N (A1 @,A; @)
~IE(Vh x Vo) N (A, 0,41 @)
é ;i - Let (x1,y2) be an edge from
X1 2 E(Vh, Vo) N (Aq, Ay)

- If we cannot find (y1, x2), then

E(Vj, Vz) N (Az, A1) is small
n X2
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Case 2: No edge can be rewired

- For all k-discs A4, Ay:
|E(Vh x Vo) N (A1 @,A; @)
%’E(\A X Vz) N (AQ , A\ .)|
é ;i - Let (x1,y2) be an edge from
X1 2 E(Vh, Vo) N (Aq, Ay)
- If we cannot find (y1, x2), then
E(Va,V2) N (Az, Aq) is small
)41 X2 .
- Hence, E(V4,V2) N (A4, Ay) is
small
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SKETCH OF THE PROOF

Case 2: No edge can be rewired

- For all k-discs A4, Ay:
|E(Vh x Vo) N (A1 @,A; @)
%’E(\A X Vz) N (AQ , A\ .)|
é ;i - Let (x1,y2) be an edge from
X1 2 E(Vh, Vo) N (Aq, Ay)
- If we cannot find (y1, x2), then
E(Va,V2) N (Az, Aq) is small
)41 X2 .
- Hence, E(V4,V2) N (A4, Ay) is
small

ViV, - Remove all edges in E(V4, V3)
— only few k-discs are
changed 1



THE ALGORITHM REVISITED

G Input Graph G = (V,E) with girth > 2k +1
Algorithm 1. Sample small set of vertices V; @

Vi



THE ALGORITHM REVISITED

G Input Graph G = (V,E) with girth > 2k +1
Algorithm 1. Sample small set of vertices V; @

2. Rewire edges in cut of V4 and
V, :=V\ Vq as long as possible

Vi



THE ALGORITHM REVISITED

G Input Graph G = (V,E) with girth > 2k +1
Algorithm 1. Sample small set of vertices V; @
2. Rewire edges in cut of V4 and
V, :=V\ Vq as long as possible
v, 3. Remove remaining edges
between V; and V,



THE ALGORITHM REVISITED

G Input Graph G = (V,E) with girth > 2k +1
Algorithm 1. Sample small set of vertices V; @
2. Rewire edges in cut of V4 and
V, :=V\ Vq as long as possible
v, 3. Remove remaining edges
between V; and V,

Output H := G[Wq]
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RESULT

Theorem

Given query access to the adjacency lists of a graph G with
girth > 2k + 1 and with maximum degree d, the algorithm
outputs a graph H of size at most fi(d, k) -e 26" that satisfies

[freq,(G) — freqp(H)[lr < e
with probability 1 — 4. Its running time is independent of G.
Remark Using a deterministic, linear-time algorithm we can

improve the bound to |V(H)| < f2(d, R)/e.

13



EXPLICIT BOUNDS

Let L be the dimension of the k-disc frequency vector.

Theorem

Given query access to the adjacency lists of a graph G with
girth > 2k + 1 and with maximum degree d, the algorithm

outputs a graph H of size at most 300 that satisfies

€26
[freqr(G) — freq(H)[l1 < e
with probability 1 — 4. Its running time is independent of G.

Remark Using a deterministic, linear-time algorithm we can
improve the bound to |V(H)| < 2L

14
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