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We design a data stream algorithm for the k-means problem, called BICO,
that combines the data structure of the SIGMOD Test of Time award winning
algorithm BIRCH [27] with the theoretical concept of coresets for clustering
problems. The k-means problem asks for a set C of k centers minimizing the
sum of the squared distances from every point in a set P to its nearest center
in C. In a data stream, the points arrive one by one in arbitrary order and
there is limited storage space.

BICO computes high quality solutions in a time short in practice. First,
BICO computes a summary S of the data with a provable quality guarantee:
For every center set C, S has the same cost as P up to a (1 + ε)-factor, i. e.,
S is a coreset. Then, it runs k-means++ [5] on S.

We compare BICO experimentally with popular and very fast heuris-
tics (BIRCH, MacQueen [24]) and with approximation algorithms (Stream-
KM++ [2], StreamLS [18, 26]) with the best known quality guarantees. We
achieve the same quality as the approximation algorithms mentioned with
a much shorter running time, and we get much better solutions than the
heuristics at the cost of only a moderate increase in running time.

1 Introduction

Clustering is the task to partition a set of objects into groups such that objects in the
same group are similar and objects in different groups are dissimilar. There is a huge
amount of work on clustering both in practice and in theory. Typically, theoretic work

∗This research was partly supported by DFG grants BO 2755/1-1 and SO 514/4-3 and within the
Collaborative Research Center SFB876, project A2. The final authenticated version is available
online at https://doi.org/10.1007/978-3-642-40450-4 41.

https://doi.org/10.1007/978-3-642-40450-4_41


focuses on exact solutions or approximations with guaranteed approximation factors,
while practical algorithms focus on speed and results that are reasonably good on the
particular data at hand.

We study the k-means problem, which given a set of points P from Rd asks for a set
of k centers such that the cost defined as the sum of the squared distances of all points
in P to their closest center is minimized. The centers induce a clustering defined by
assigning every point to its closest center.

For this problem, the algorithm most used in practice is Lloyd’s algorithm, an iterative
procedure that converges to a local optimum after a possibly exponential number of
iterations. An improved algorithm known as k-means++ by Arthur and Vassilvitskii [6]
has a O(log k) approximation guarantee.

Big Data is an emerging area of computer science. Nowadays, data sets arising from
large scale physical experiments or social networks analytics are far too large to fit in
main memory. Some data, e. g., produced by sensors, additionally arrives one by one,
and it is desirable to filter it at arrival without intermediately storing large amounts of
data. Considering k-means in a data stream setting, we assume that points arrive in
arbitrary order and that there is limited storage capacity. Neither Lloyd’s algorithm nor
k-means++ work in this setting, and both would be too slow even if the data already was
on a hard drive [2].

A vast amount of approximation algorithms were developed for the k-means problem
in the streaming setting. They usually use the concept of coresets. A coreset is a small
weighted set of points S, that ensures that if we compute the weighted clustering cost
of S for any given set of centers C, then the result will be a (1 + ε)-approximation of
the cost of the original input.

Approximation algorithms are rather slow in practice. Algorithms fast in practice are
usually heuristics and known to compute bad solutions on occasions. The best known
one is BIRCH [27]. It also computes a summary of the data, but without theoretical
quality guarantee.

This paper contributes to the field of interlacing theoretical and practical work to
develop an algorithm good in theory and practice. An early work in this direction is
StreamLS [18, 26] which applies a local search approach to chunks of data. StreamLS is
significantly outperformed by Stream-KM++[2] which computes a coreset and then solves
the k-means problem on the coreset by applying k-means++. Stream-KM++ computes
very good solutions and is reasonably fast for small k. However, especially for large k,
its running time is still far too large for big data sets.

We develop BICO, a data stream algorithm for the k-means problem which also com-
putes a coreset and achieves very good quality in practice, but is significantly faster than
Stream-KM++.

Related Work. To solve k–means in a stream, there are three basic approaches.
First, one can apply an online gradient descent such as MacQueen’s algorithm [24].
Such an algorithm is usually the fastest available, yet the computed solution has poor
performance in theory and (usually) also in practice.

The other two approaches compute summaries of the data for further processing.
Summaries should be small to speed up the optimization phase, they should have a
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good quality, and their computation should be fast. Summary computing algorithms
either update the summary one point at a time or read a batch of points and process
them together.

Theoretical analysis has mostly focused on the latter scenario and then relies on the
merge & reduce framework originally by Bentley and Saxe [7] and first applied to cluster-
ing in [4]. Informally speaking, a coreset construction can be defined in a non-streaming
manner and then be embedded into the merge & reduce framework. The computed core-
set is by a factor of logt+1 n larger than the non-streaming version where t is the exponent
of ε−1 in the coreset size. The running time is increased to 2C(m) · n/m where m is the
batch size and C(m) is the time of the non-streaming version of the coreset construction.
Thus, the asymptotic running time is not increased (for at least linear C(m)), but from
a practical point of view this overhead is not desirable. Another drawback is that the
size of the computed coresets usually highly depends on log n. Streaming algorithms
using summaries include [8, 10, 11, 12, 20, 21, 22]. In particular, StreamLS uses a batch
approach, and Stream-KM++ uses merge & reduce. There is usually a high dependency
on log n in merge & reduce constructions. If d is not a constant, the smallest dependency
on the dimension is achieved by [12] and this coreset has a size of O(k2 · ε−4 log5 n)
(which is independent of d).

For pointwise updates, in particular notice the construction in [15] computing a
streaming coreset of size O(k · log n ·ε−(d+2)). For low dimensions, i. e., if d is a constant,
this is the lowest dependency on k and log n of any coreset construction. This is due to
the fact that the coreset is maintained without merge & reduce. The time to compute
the streaming coreset is Õ(n · ρ + k · log n · ρ · ε−(d+2)) with ρ = log(n∆/ε) where ∆ is
the spread of the points, i. e., the maximal distance divided by the smallest distance of
two distinct points.

Pointwise updates are usually preferable for practical purposes. Probably the best
known practical algorithm is BIRCH [27]. It reads the input only once and computes a
summary by pointwise updates. Then, it solves the k-means problem on the summary
using agglomerative clustering.

The summary that BIRCH computes consists of a tree of so-called Clustering Features.
A Clustering Feature (CF) summarizes a set of points by the sum of the points, the
number of points and the sum of the squared lengths of all points. BIRCH has no
theoretical quality guarantees and does indeed sometimes perform badly in practice
[17, 19].

We are not aware of other very popular data stream algorithms for the k-means
problem. There is a lot of work on related problems, for example CURE [17] which
requires more than one pass over the data, DBSCAN [9] which is not center based,
CLARANS [25] which is typically used when centers have to be chosen from the dataset
and is not particularly optimized for points in Euclidean space and ROCK [16] and
COBWEB [14] which are designed for categorical attributes.

Our Contribution. We develop BICO, a data stream algorithm based on the data
structure of BIRCH. Both algorithms compute a summary of the data, but while the
summary computed by BIRCH can be arbitrarily bad as we show at the start of Section 3,
we show that BICO computes a coreset S, so for every set of centers C, the cost of the
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input point set P can be approximated by computing the cost of S. For constant
dimension d, we bound the size m of our coreset by O(k · log n · ε−(d+2)) and show
that BICO needs O (N(m) · (n+m log n∆)) time to compute it where N(m) is the time
needed to solve a nearest neighbor problem within m points. Trivially, N(m) = O(m).
By using range query data structures, N(m) = O(logd−1m) can be achieved at the cost of
O(m logd−1m) additional space [3]. Notice that the size of the coreset is asymptotically
equal to [15].

We implement BICO and show how to realize the algorithm in practice by introduc-
ing heuristic enhancements. Then we compare BICO experimentally to two heuristics,
BIRCH and MacQueen’s k-means algorithm, and to two algorithms designed for high
quality solutions, Stream-KM++ and StreamLS. BICO computes solutions of the same
high quality as Stream-KM++ and StreamLS which we believe to be near optimal. For
small k, BICOs running time is only beaten by MacQueen’s and in particular, BICO
is 5-10 times faster than Stream-KM++ (and more for StreamLS). For larger k, BICO
needs to maintain a larger coreset to keep the quality up. However, BICO can trade
quality for speed. We do additional testruns showing that with different parameters,
BICO still beats the cost of MacQueen and BIRCH in similar running time. We believe
that BICO provides the best quality-speed trade-off in practice.

2 Preliminaries

The k-means problem. Let P ⊆ Rd be a set of points in d-dimensional Euclidean
space with |P | = n. For two points p, q ∈ P , we denote their Euclidean distance by

||p − q|| :=
√∑d

i=1(pi − qi)2. The k-means problem asks for a set C of k points in Rd

(called centers) that minimizes the sum of the squared distances of all points in P to
their closest point in C, i. e., the objective is minC⊂Rd,|C|=k

∑
p∈P minc∈C ||p − c||2 =:

minC⊂Rd,|C|=k cost(P,C).
The weighted k-means cost is defined by costw(P,C) :=

∑
p∈P w(p) minc∈C

||p − c||2 for any weight function w : P → R+, and the weighted k-means objective
then is minC⊂Rd,|C|=k costw(P,C). For a point set P , we denote the centroid of P as

µ(P ) := 1
|P |
∑

p∈P p. The k-means objective function satisfies the following well-known

equation that allows to compute cost(P, {c}) via µ(P ).

Fact 1. Let P ⊂ Rd be a finite point set. Then the following equation holds:
∑

p∈P ||p−
c||2 =

∑
p∈P ||p− µ(P )||2 + |P |||µ(P )− c||2.

BIRCH. We only describe the main features of BIRCH’s preclustering phase. The
algorithm processes given points on the fly, storing them in a so called CF Tree where
CF is the abbreviation of Clustering Feature.

Definition 2 (Clustering Feature). Let P := {p1, . . . , pn} ⊂ Rd be a set of n d-
dimensional points. The Clustering Feature CFP of P is a 3-tuple (n, s1, S2) where n
is number of points, s1 =

∑n
i=1 pi is the linear sum of the points, and S2 =

∑n
i=1 ||pi||2

is the sum of the squared lengths of the points.
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The usage of Clustering Features are the main space reduction concept of BIRCH.
Notice that given a Clustering Feature CFP = (n, s1, S2), the squared distances of all
points in a point set P to one given center c can be calculated exactly by cost (P, {c}) =∑n

i=1 ||pi||2 − n · ||µ(P )− 0||2 + n · ||c− µi||2 = S2 − 1
n ||s1||2 + n||c− s1/n||2.

When using Clustering Features to store a small summary of points, the quality of
the summary decreases when storing points together in one CF that should be assigned
to different centers later on. If we summarize points in a CF and later on get centers
where all these points are closest to the same center, then their clustering cost can be
computed with the CF without any error. Thus, the idea of BIRCH is to heuristically
identify points that are likely to be clustered together. For this purpose, they use the
following insertion process.

The first point in the input opens the first CF, i. e., a CF only containing the first
point is created. Then, iteratively, the next points are added. For a new point p, BIRCH
first looks for the CF which is ‘closest’ to p. Let CFS be an arbitrary existing CF in
the CF tree of BIRCH and recall that CFS represents the set of points S. The distance
between p and CFS is defined as∑

q∈S∪{p}

(q − (
∑

q′∈(S∪{p})
q′)/(|S|+ 1))2 −

∑
q∈S

(q − (
∑
q′∈S

q′)/|S|)2. (1)

Let CFS∗ be the CF closest to p. Then, p is added to CFS∗ if the radius√∑
p∈(S∗∪{p})(q − µS∗)2

|S|+ 1

is smaller than a given threshold t. If the radius exceeds the threshold, then p opens a
new CF.

BIRCH works with increasing thresholds when processing the input data. It starts
with threshold t = 0 and then increases t whenever the number of CFs exceeds a given
space bound, calling a rebuilding algorithm to shrink the tree. This algorithm ensures
that the number of CFs is decreased sufficiently. Notice that CFs cannot be split again,
so the rebuilding might return a different tree than the one computed directly with the
new threshold.

Coresets. BIRCH decides heuristically how to group the points into subclusters.
We aim at refining this process such that the reduced set is not only small but is also
guaranteed to approximate the original point set. More precisely, we aim at constructing
a coreset:

Definition 3 ([21]). A (k, ε)-coreset is a subset S ⊂ Rd weighted with a weight function
w′ : S → Rd such that for all C ⊂ Rd, |C| = k, it holds that |costw′(S,C)− cost(P,C)| ≤
ε · cost(P,C).

3 BICO: Combining BIRCH and Coresets

The main problem with the insertion procedure of BIRCH is that the decision whether
points are added to a CF or not is based on the increase of the radius of the candidate
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Figure 1: An example created by drawing 150 points uniformly at random from the
areas around (−0.5, 0) and (0, 0.5) and 75 points from [−4,−2]× [4, 2]. BIRCH
computed the centers marked by x leading to the partitioning by the solid line.
BICO computed the same centers in 10 independent runs, marked by circles
and the dashed line partitioning.

CF. Figure 1 shows a point set that was generated with two rather close but clearly
distinguishable clusters plus randomly added points serving as noise. The problem for
BIRCH is that the distance between the two clusters is not much larger than the average
distance between the points in the noise. We see that BIRCH merges the clusters together
and thus later computes only one center for them while the second center is placed inside
the noise.

Our lower bound example for the quality guarantee of BIRCH follows this intuition. It
looks similar to Figure 1, but is multi-dimensional and places the points deterministically
in a structured way useful for the theoretical analysis.

Let d > 1 and define the point sets P1 := {(7, 3i2, . . . , 3id) | i2, . . . , id ∈ {−2,−1, 0, 1, 2}}
and P2 := {(−7, 3i2, . . . , 3id) | i2, . . . , id ∈ {−2,−1, 0, 1, 2}}. Let R be the set of
(n − |P1| − |P2|)/2 points at position (1, 0, . . . , 0) and equally many points at position
(−1, 0, . . . , 0) and set P̃ = P1 ∪ P2 ∪R.

Theorem 4. For c > 0, input P̃ and threshold T > 0, BIRCH either has Ω(n1/c) CFs

or the computed solution has cost of at least Ω
(

(n1− 1
c /log n) ·OPT

)
.

The basic algorithm. Like BIRCH, BICO uses a tree whose nodes correspond to
CFs. The tree has no distinguished root, but starts with possibly many CFs in level 1
(which can be seen as children of an imaginary root node). When we open a CF, we keep
the first point in the CF as its reference point. The first point in the stream just opens
a CF in level 1. Now, for each new point, we first try to add the point into an existing
CF. We start on the first level i = 1. We try to insert the current point to the nearest
CF in level i. The insertion fails if all CFs are far away, i.e. the distance between the
current point and all CF reference points is larger than the radius Ri of CFs on level i,
or the nearest CF is full, i.e. the cost of the point set represented by the CF is greater
or equal than a threshold parameter T . In the first case we open a new CF with the
current point as reference point in level i and in the second case we recurse and try to
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insert the point into the children of the nearest CF which are on level i+ 1.
The algorithm is given in Algorithm 1. We assume that nmax is large enough to ensure

that line 13 is never executed. We denote the CF that a point r is reference point of as
CF (r). By nearest(p, S) we refer to the reference point closest to p of all CFs in S. By
children(CF (r)) we denote the set of CFs that are children of CF (r) in the tree. For
sake of shorter notation, we also use a virtual point ρ with virtual CF CF (ρ) for the
root node of the tree.

Theorem 5. Let ε > 0, f(ε) = (2 · (log n) · 4d ·
√

40
d+2

)/(εd+2), OPT/(k · f(ε)) ≤ T ≤
2 ·OPT/(k · f(ε)) and Ri =

√
T/(8 · 2i). The set of centroids s1/n

′, where (n′, s1, S2) is
a CF resulting from Algorithms 1, weighted with n′ is a (k, ε)-coreset of size O(k · log n ·
ε−(d+2)) if the dimension d is a constant.

Algorithm 1: Update mechanism where T and Ri are fixed parameters

input: p ∈ Rd

1 Set f = ρ, S = children (CF (ρ)) and i = 1;
2 if S = ∅ or ||p− nearest(p, S)|| > Ri then
3 Open new CF with reference point p in level i as child of CF (f);
4 else
5 Set r := nearest(p, S);
6 if costCF (CF (r) ∪ {p}) ≤ T then
7 Insert p in CF (r);
8 else
9 Set S := children (CF (r));

10 Set f := r and i := i+ 1;
11 Goto line 2;

12 if number of current CFs > nmax then
13 Start rebuilding algorithm;

The Rebuilding Algorithm. Above, we assumed that we know the cost of an opti-
mal solution beforehand. To get rid of this assumption, we start with a small threshold,
increase it if necessary and use the rebuilding algorithm given in Algorithm 2 to adjust
the tree to the new threshold. If we start with a T smaller than OPT/(k · f(ε)) and
keep doubling it, then at some point T will be in [OPT/(k · f(ε)), 2 · OPT/(k · f(ε))],
and at this point in time our coreset size of O(k · log n · ε−(d+2)) is sufficient to store a
(k, ε)-coreset. Until this point, we will need rebuilding steps, but we will not lose quality.

The aim of the rebuilding algorithm is to create a tree which is similar to the tree
which would have resulted from using the new threshold in the first place. Let R′i be
the radii before and let Ri be the radii after one iteration of the rebuilding algorithm.
Notice that Ri =

√
2 · T ′/(8 · 2i) =

√
T ′/(8 · 2i−1) = R′i−1. Thus, if a CF is not moved

up and thus its level is increased by one, the radius will remain the same. This is nice
as thus the CF in the same level automatically satisfy that the reference points are not
within the radii of their neighbors. However, other properties of the tree do no longer
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hold in the original way: (1) If a CF CF (r) on level i is inserted to a CF CF (r′) on
level i− 1, i. e., CF (r) becomes a new child of CF (r′) or they are merged, it is possible
that some points which are represented by CF (r) are not within the radius Ri−1 of r′.
But the distance can be bounded by Ri−1 + Ri such that the CFs on each level do not
overlap too much. (2) The rebuilding algorithm can not split CFs. Thus, the set of CFs
is different compared to a run where the new threshold was used in the first place. In
total, these changes slightly increase the coreset size compared to Theorem 5, but it can
be still bounded by O(k · log n · ε−(d+2)), and the weighted set of centroids also remains
a (k, ε)-coreset.

Algorithm 2: Rebuilding algorithm when number of CFs gets too large

1 Set T := 2 · T ;
2 Create a new empty level 1 (which implicitly increases the number of all

existing levels);
3 Let S1 be the empty set of Clustering Features in level 1;
4 Let S2 be the set of all Clustering Features in level 2;
5 for all Clustering Features X ∈ S2 with reference point p do
6 if S1 = ∅ or ||p− nearest(p, S1)||2 > R1 then
7 Move X from S2 to S1;
8 Notice that this implicitly moves all children of X one level up;

9 else
10 if cost (X ∪ CF (nearest(p, S1))) ≤ T then
11 Insert X into CF (nearest(p, S1));
12 else
13 Make X a child of CF (nearest(p, S1));

14 Traverse through the CF tree and, if possible, merge CFs into parent CFs

Running Time. When trying to insert a point on level i, we need to decide whether
the point is within distance Ri of its nearest neighbor, and if so, we need to locate the
nearest neighbor. Let N(m) denote the time needed for this, depending on the coreset
size m ∈ O(k · log n · ε−(d+2)). The running time of BICO is O(N(m) · n) plus the time
needed for the rebuilding steps.

A rebuilding step needs to go through all m elements of the coreset and to insert them
into the new-build tree. This takes O(m ·N(m)) time. The number of rebuilding steps
depends on how we choose the start value for T . We proved that BICO computes a
(k, ε)-coreset for large enough m. In particular, this means that for any m + 1 points,
BICO contracts at least two of them during the process. We use this observation by
scanning through the first m+1 points and calculating the minimal distance d0 between
two points (here, just ignore multiple points at the same position). Notice that if T < d2

0,
we are not able to merge any two points into one Clustering Feature. We set T = d2

0.
Then, T cannot be too small, because otherwise we cannot contract the m points.

The cost of any clustering is bounded from above by n · ∆max where ∆max is the
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maximal distance between any two points. Our start value for T is bounded from below
by the smallest distance ∆min between any two points. Thus, the factor between the
start and end value of T is bounded by n · ∆max

∆min
. The fraction ∆ := ∆max

∆min
is called the

spread of the points. With each rebuilding step we double T , and thus the number of
rebuilding steps is bounded by log(n ·∆).

Corollary 6. BICO computes a coreset for a set of n points in Rd given as an input
only data stream in time bounded by O(N(m)(n+ log(n∆)m)) using O(m) space where
m ∈ O(k · log n · ε−(d+2)) is the coreset size and d is constant.

4 Experiments

Algorithms. We compare BICO with Stream-KM++, StreamLS, BIRCH and Mac-
Queen’s k-means algorithm. Stream-KM++ also aims at a trade-off between quality and
speed which makes it most relevant for our work. BIRCH is the most relevant practical
algorithm. We include MacQueen because it performed very well on one data set and is
very fast. We use the author’s implementations for Stream-KM++ [2], BIRCH [27] and
StreamLS [18, 26] and an open source implementation of MacQueen’s k-means [13]. We
use the same parameters for BIRCH as in [2] except that we increase the memory to
26% on BigCross and 8% on Census in order to enable BIRCH to compute solutions for
our larger k.

Setting. All computations were performed on seven identical machines with the
same hardware configuration (2.8 Ghz Intel E7400 with 3 MB L2 Cache and 8 GB
main memory). BICO and k-means++ are implemented in C++ and compiled with gcc
4.5.2. The source code for the algorithms, the testing environment and links to the other
algorithms’ source codes will appear at our website1.

After computing the coreset, we determine the final solution via five weighted k-
means++ runs (until convergence) and chose the solution with best cost on the coreset.
The implementation of BICO differs from Section 3 in two points.

Coreset Size. Our theoretic analysis gives a worst case bound on the space needed by
BICO even for adversarial inputs. On average instances, we expect that O(k) Clustering
Features suffice to get a very good solution. The authors in [2] used the size 200k for
Stream-KM++ which we also opted to use for both Stream-KM++ and BICO in our line
of experiments. This leads to a asymptotic running time of O (k · (n+ k log n∆)) for
BICO.

Filtering. A large part of the running time of BICO is spent for nearest neighbor
queries on the first level of the tree. We speed it up by an easy heuristic: All CF reference
points are projected to d one-dimensional subspaces chosen uniformly at random at the
start of BICO. Let p be a new point. Since only reference points that are close to p in
each subspace are candidates for the cluster feature we are searching for, we take the
subspace where the number of points within distance R1 of p is smallest and only iterate
through these to find the nearest neighbor.

Datasets. We used the four largest data sets evaluated in [2], Tower, Covertype and
Census from the UCI Machine Learning Repository [1] and BigCross, which is a subset

1http://ls2-www.cs.uni-dortmund.de/bico
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of the Cartesian product of Tower and Covertype, created by the authors of [2] to have
a very large data set. Additionally, we use a data set we call CalTech128 which is also
large and has higher dimension. It consists of 128 SIFT descriptors [23] computed on
the Caltech101 object database.

BigCross CalTech128 Census CoverType Tower

Number of Points (n) 11620300 3168383 2458285 581012 4915200

Dimension (d) 57 128 68 55 3

Total size (n · d) 662357100 405553024 167163380 31955660 14745600

Experiments. On Census, Tower and BigCross, we ran tests with all values for k from
[2], and k = 250 and k = 1000 in addition. On CalTech128, we tested k = 50, 100, 250
and k = 1000. We repeated all randomized algorithms 100 times and the diagrams show
the mean values. In all diagrams, the bar of BICO is composed of two bars on top of each
other corresponding to the core BICO part and the k-means++ part of BICO. We did not
find parameters that enabled BIRCH to compute centers on CalTech128. Due to tests
that we did with modified versions of CalTech128 we believe that the implementation is
not able to handle data with a dimension like CalTech128.
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Figure 3: Running times and costs for datasets BigCross and CalTech for large k
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Figure 4: Running times and costs for datasets Tower and Covertype

Comparison with Stream-KM++ and StreamLS. StreamLS, Stream-KM++
and BICO all have comparable solution quality (see Figures 2, 4, 3). StreamLS, however,
is rather slow such that we did not include it in the diagrams and did not include Stream-
LS in the tests for larger k. The running times of Stream-KM++ and BICO both depend
on the number of centers which is reasonable because more centers require a larger coreset
size which induces more effort to keep the coreset up to date. However, BICO is 5-10
times faster and applicable to much higher values of k (see Figure 2, 3, 4).

Comparison with BIRCH and MacQueen. BIRCH and MacQueen both tend to
compute much worse solutions. MacQueen performs okay on Census, really well on Cal-
Tech128, but badly on BigCross and worse on Tower and Covertype (see Figures 2, 3, 4).
MacQueen starts being faster than BIRCH, but is slower for larger k (compare BigCross
in Figure 2 and 3) because BIRCH does not adjust for larger k. The running time of
BICO is nearly always lower than that of BIRCH for small k (see Figures 2, 4) and within
two times the running time of MacQueen in most experiments. For large k, BICO has
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significantly larger running time. If the dataset is high-dimensional like CalTech128, this
is mainly due to k-means++, while on data sets with a lot of points of lower dimension
like BigCross, the core part of BICO is dominating.

BICO for large k. We point out that BICO is still practical for large k despite the
large running times when adjusted. We chose BigCross because a running time of 4.6
hours is unfavourable and because here, the running time is due to core BICO and cannot
be tackled by improving the k-means++ implementation (which is implemented without
any speed-ups). By reducing the coreset size, the running time of BICO decreases. We
lower it until BICO runs in 619 seconds compared to a running time of 616 seconds
by BIRCH and 4241 seconds by MacQueen. The solution computed by BICO is still
significantly better than the solutions by MacQueen and BIRCH.

Remark. Notice that many proof and experiment details are omitted due to space
restrictions and will appear in a long version of the paper.
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